2018 年研究生入学考试数学一选择题第 4 题解析

一、题目

设 $M$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $\frac{(1+x)^{2}}{1+x^{2}}$ $dx$, $N$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $\frac{1+x}{e^{x}}$ $dx$, $K$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $(1+\sqrt{\cos x})$ $dx$, 则 ( )

( A ) $M$ $>$ $N$ $>$ $K$

( B ) $M$ $>$ $K$ $>$ $N$

( C ) $K$ $>$ $M$ $>$ $N$

( D ) $K$ $>$ $N$ $>$ $M$

二、解析

在解答题目时,能化简的要先化简,能计算出具体数值的要先计算出具体数值。
首先观察本题,发现 $M$ 对应的式子应该是可以化简或者通过积分计算出具体的数值。于是:

$M$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $\frac{(1+x)^{2}}{1+x^{2}}$ $dx$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $\frac{1+x^{2}+2x}{1+x^{2}}$ $dx$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $[\frac{1+x^{2}}{1+x^{2}}$ $+$ $\frac{2x}{1+x^{2}}]$ $dx$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $[$ $1$ $+$ $\frac{2x}{1+x^{2}}]$ $dx$

计算到上面这一步之后,我们有两种方法可以继续上面的计算,一种方法是利用积分函数在对称区间上的性质,另一种是利用基本积分公式直接计算。

下面分别使用上述提到的两种方法展开计算。

方法一:利用积分函数在对称区间上的性质

这里说的“对称区间”指的是关于原点对称的区间,观察题目可知,题目中的积分函数的上限和下限组成的区间 $[-\frac{\pi}{2}$, $\frac{\pi}{2}]$ 正好是关于原点对称的。

根据积分的几何意义,我们知道,奇函数在关于原点对称的对称区间上的积分是等于 $0$ 的。

$y$ $=$ $x$, $x$ $\in$ $(-\infty,$ $+\infty)$ 就是一个典型的奇函数,如图 1:

图 01. 奇函数图像.

因此,接下来,我们如果能证明一个函数是奇函数,就可以证明这个函数在关于原点对称的区间上的积分是 $0$.

于是,令:

$f(x)$ $=$ $\frac{2x}{1+x^{2}}$

则:

$\frac{2(-x)}{1+(-x)^{2}}$ $=$ $-\frac{2x}{1+x^{2}}$ $\Rightarrow$ $f(-x)$ $=$ $-f(x)$.

因此 $f(x)$ $=$ $\frac{2x}{1+x^{2}}$ 是一个奇函数,于是:

$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $\frac{2x}{1+x^{2}}$ $dx$ $=$ $0$.

即:

$M$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $1$ $dx$.

方法二:利用基本积分公式直接计算

由前面的计算,我们已知,$M$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $\frac{2x}{1+x^{2}}$ $dx$, 于是,根据积分公式:

$d(x^{\mu})$ $=$ $\mu$ $x^{\mu-1}$ $dx$

我们可以令 $2x$ $dx$ $=$ $d(1+x^{2})$.

于是:

$M$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $1$ $dx$ $+$ $\frac{d(1+x^{2})}{1+x^{2}}$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $1$ $dx$ $+$ $\frac{1}{1+x^{2}}$ $d(1+x^{2})$.

接下来,根据基本积分公式:

$\int$ $\frac{1}{x}$ $dx$ $=$ $\ln |x|$ $+$ $c$.

我们有:

$M$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $1$ $+$ $\frac{1}{1+x^{2}}d(1+x^{2})$ $=$ $x$ $+$ $\ln |1+x^{2}|$ $+$ $c$ $|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $=$ $\frac{\pi}{2}$ $+$ $|\ln[1+(\frac{\pi}{2})^{2}]|$ $+$ $c$ $-$ $(-\frac{\pi}{2})$ $-$ $|\ln[1+(-\frac{\pi}{2})^{2}]|$ $-$ $c$ $=$ $\frac{\pi}{2}+\frac{\pi}{2}$ $=$ $\pi$.

又因为,$M$ 的积分上限 $\frac{\pi}{2}$ 减去 $M$ 的积分下限 $-\frac{\pi}{2}$ 也等于 $\pi$.

根据定积分的基本性质:

$\int_{a}^{b}$ $1$ $dx$ $=$ $b$ $-$ $a$.

我们知道:

$M$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $1$ $dx$.

补充:

如果是计算 $\int$ $\frac{2x}{1-x^{2}}$ $dx$, 则我们至少有以下两种计算方法:

$\int$ $\frac{2x}{1-x^{2}}$ $dx$ $=$ $-\int$ $\frac{1}{1-x^{2}}$ $=$ $-\ln |1-x^{2}|$ $+$ $c$;

或者:

$\int$ $\frac{2x}{1-x^{2}}$ $dx$ $=$ $\int$ $(\frac{1}{1-x}-\frac{1}{1+x})$ $dx$ $=$ $-\ln|x-1|$ $-$ $\ln|x+1|$ $+$ $c$ $=$ $-\ln|x^{2}-1|$ $+$ $c$.

至此,我们分别使用两种方法完成了对 $M$ 的化简计算。

根据定积分的比较定理:

设 $f(x)$ $\leqslant$ $g(x)$, $x$ $\in$ $[a,b]$, 则 $\int_{a}^{b}$ $f(x)$ $dx$ $\leqslant$ $\int_{a}^{b}$ $g(x)$ $dx$.

观察题目可知,题目中给出的三个定积分 $M$, $N$, $K$ 的上限和下限都是一样的,因此,我们可以使用上述比较定理比较他们的大小。

由于在 $M$, $N$, $K$ 中,我们目前已知的只有 $M$ 的数值,因此接下来我们先比较 $N$ 和 $K$ 中的积分函数与 $1$ 的大小关系。

首先来判断 $N$ 的积分函数和 $1$ 的大小关系。

当 $x$ $=$ $0$ 时,$1$ $+$ $x$ $=$ $e^{x}$ $=1$;

当 $x$ $<$ $0$ 时,$e^{x}$ 的减小速度小于 $1$ $+$ $x$ 的减小速度;

当 $x$ $>$ $0$ 时,$e^{x}$ 的增长速度大于 $1$ $+$ $x$ 的增长速度。

也就是说,在整个定义域内,$y$ $=$ $e^{x}$ 的函数图像始终在 $y$ $=$ $1$ $+$ $x$ 的上方或者和 $y$ $=$ $1$ $+$ $x$ 重合,他们二者的图像如图 2:

Figure 2. 两个函数的对比图像,使用 www.desmos.com 制作

所以 $\frac{1+x}{e^{x}}$ $\leqslant$ $1$, $x$ $\in$ $[-\frac{\pi}{2}$, $\frac{\pi}{2}]$. 再来判断 $K$ 的积分函数和 $1$ 的大小关系。

我们知道,当 $x$ $\in$ $[$ $-\frac{\pi}{2},$ $\frac{\pi}{2}$ $]$ 上时,$y$ $=$ $\cos x$ $\geqslant$ $0$ 的,如图 3:

Figure 3. 余弦函数的图像,使用 www.desmos.com 制作

于是 $1$ $+$ $\sqrt{\cos x}$ $\geqslant$ $1$.

综上可知:

$K$ $\geqslant$ $M$ $\geqslant$ $N$, 正确选项是:C

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress