2013 年研究生入学考试数学一选择题第 1 题解析

题目

已知极限 $\lim_{x \rightarrow 0} \frac{x-\arctan x}{x^{k}}=c,$ 其中 $k,c$ 为常数,且 $c \neq 0,$ 则 ( )

$$( A ) k=2,c=-\frac{1}{2}.$$

$$( B ) k=2,c=\frac{1}{2}.$$

$$( C ) k=3,c=-\frac{1}{3}.$$

$$( D ) k=3,c=\frac{1}{3}.$$

解析

解答本题需要用到一个等价无穷小替换:

$$x – \arcsin x \sim \frac{1}{3}x^{3}.$$

于是我们有:

$$\lim_{x \rightarrow 0} \frac{x-\arctan x}{x^{k}} = \lim_{x \rightarrow 0} \frac{\frac{1}{3}x^{3}}{x^{k}} = c.$$

由于 $c$ 是常数,$\frac{1}{3}x^{3}$ 是 $x^{k}$ 的同阶无穷小。

于是,$k=3,c=\frac{1}{3}.$

综上可知,正确答案是:D

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress