无穷多项的数列问题常常可以利用定积分的定义转化为定积分

一、题目题目 - 荒原之梦

已知:

$$
\begin{aligned}
I & = \\
& \lim \limits_{n \rightarrow \infty}\left(\frac{\sin ^{2} \frac{\pi}{n}}{n}+\frac{\sin ^{2} \frac{2 \pi}{n}}{n}+\cdots+\frac{\sin ^{2} \frac{n \pi}{n}}{n}\right)
\end{aligned}
$$

则:

$$
I \ = \ ?
$$

难度评级:

二、解析 解析 - 荒原之梦

$$
\begin{aligned}
I \\ \\
& = \lim \limits_{n \rightarrow \infty}\left(\frac{\sin ^{2} \frac{\pi}{n}}{n}+\frac{\sin ^{2} \frac{2 \pi}{n}}{n}+\cdots+\frac{\sin ^{2} \frac{n \pi}{n}}{n}\right) \\ \\
& = \frac{1}{n} \lim \limits_{n \rightarrow \infty}\left( \sin ^{2} \frac{\pi}{n} + \sin ^{2} \frac{2 \pi}{n} + \cdots + \sin ^{2} \frac{n \pi}{n} \right) \\ \\
& = \lim \limits_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \sin ^{2} \left( \pi \cdot \frac{i}{n} \right) \\ \\
& = \int_{0}^{1} \sin ^{2} ( \pi x ) \mathrm{~d} x \\ \\
& = \frac{1}{\pi} \int_{0}^{1} \sin ^{2} \pi x \mathrm{~d}(\pi x) \\ \\
& \xlongequal{\pi x=t} \frac{1}{\pi} \int_{0}^{\pi} \sin ^{2} t \mathrm{~d} t \\ \\
& = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin ^{2} t \mathrm{~d} t \\ \\
& = \frac{2}{\pi} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \\ \\
& = \frac{1}{2}
\end{aligned}
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress