一、题目
使用拉格朗日配方法将 $f$ $=$ $2 x_{1} x_{2}+2 x_{1} x_{3}-6 x_{2} x_{3}$ 化为标准形,并求出对应的线性变换矩阵 $C$.
难度评级:
二、解析
Tips:
关于拉格朗日配方法的完整讲解,可以参阅《将二次型化为标准型(规范型)的方法之:拉格朗日配方法》这篇文章。
已知:
$$
f=2 x_{1} x_{2}+2 x_{1} x_{3}-6 x_{2} x_{3}
$$
令:
$$
\tag{1} \left\{\begin{array}{l}x_{1}=y_{1}+y_{2} \\ x_{2}=y_{1}-y_{2} \\ x_{3}=y_{3} .\end{array} \right. \Rightarrow
$$
$$
\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]\
$$
$$
(1) \Rightarrow f \Rightarrow
$$
$$
f = 2\left(y_{1}+y_{2}\right)\left(y_{1}-y_{2}\right)+2\left(y_{1}+y_{2}\right) y_{3}-
$$
$$
6\left(y_{1}-y_{2}\right) y_{3} \Rightarrow
$$
$$
f = 2 y_{1}^{2}-2 y_{2}^{2}+2 y_{1} y_{3}+2 y_{2} y_{3}-
$$
$$
6 y_{1} y_{3}+6 y_{2} y_{3} \Rightarrow
$$
$$
f = 2 y_{1}^{2}-2 y_{2}^{2}+8 y_{2} y_{3}-4 y_{1} y_{3} \Rightarrow
$$
$$
f=2\left(y_{1}^{2}-2 y_{1} y_{3}\right)-2 y_{2}^{2}+8 y_{2} y_{3} \Rightarrow
$$
$$
f=2\left(y_{1}-y_{3}\right)^{2}-2 y_{2}^{2}-2 y_{3}^{2}+8 y_{2} y_{3} \Rightarrow
$$
$$
f=2\left(y_{1}-y_{3}\right)^{2}-2\left(y_{2}^{2}-4 y_{2} y_{3}\right)-2 y_{3}^{2} \Rightarrow
$$
$$
f=2\left(y_{1}-y_{3}\right)^{2}-2\left(y_{2}-2 y_{3}\right)^{2}+6 y_{3}^{2}
$$
于是:
$$
\left\{\begin{array}{l}z_{1}=y_{1}-y_{3} \\ z_{2}=y_{2}-2 y_{3} \\ z_{3}=y_{3}\end{array} \right. \Rightarrow
$$
$$
\left\{\begin{array}{l}z_{1}=y_{1}-z_{3} \\ z_{2}=y_{2}-2 z_{3} \\ y_{3}=z_{3}\end{array} \Rightarrow\right.
$$
$$
\left\{\begin{array}{l}y_{1}=z_{1}+z_{3} \\ y_{2}=z_{2}+2 z_{3} \\ y_{3}=z_{3}\end{array} \right. \Rightarrow
$$
$$
\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]
$$
于是可知,二次型 $f$ 的标准型为:
$$
f=2 z_{1}^{2}-2 z_{2}^{2}+6 z_{3}^{2}
$$
对应的变换矩阵为:
$$
C=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & -1 & -1 \\ 0 & 0 & 1\end{array}\right]
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!