2017 年研究生入学考试数学一选择题第 2 题解析

一、题目

若函数 $f(x)$ 可导,且 $f(x)$ $f'(x)$ $>$ $0$, 则()

( A ) $f(1)$ $>$ $f(-1)$

( B ) $f(1)$ $<$ $f(-1)$

( C ) $|f(1)|$ $>$ $|f(-1)|$

( D ) $|f(1)|$ $<$ $|f(-1)|$

二、解析

观察题目我们可以发现,$f(x)$ $f'(x)$ 和下面这个这个公式很像:

$[f(x)$ $\cdot$ $g(x)]’$ $=$ $f'(x)$ $g(x)$ $+$ $f(x)$ $g'(x)$

如果我们令 $g(x)$ $=$ $f(x)$, 则有:

$f'(x)g(x)$ $+$ $f(x)g'(x)$ $=$ $f'(x)f(x)$ $+$ $f(x)f'(x)$ $=$ $f(x)f'(x)$ $+$ $f(x)f'(x)$ $=$ $2f(x)f'(x)$

进一步,我们可以令 $F(x)$ $=$ $f^{2}(x)$, 则有:

$F'(x)$ $=$ $2$ $f(x)f'(x)$

由题可知,$f(x)f'(x)$ $>$ $0$, 于是有 $F'(x)$ $>$ $0$, 即 $F(x)$ 是一个单调递增的函数,由此可得:

$F(1)$ $-$ $F(-1)$ $>$ $0$

即:

$f^{2}(1)$ $-$ $f^{2}(-1)$ $>$ $0$ $\Rightarrow$ $f^{2}(1)$ $>$ $f^{2}(-1)$ $\Rightarrow$ $|f(1)|$ $>$ $|f(-1)|$

综上可知,正确答案为:$C$.

EOF

2017 年研究生入学考试数学一选择题第 1 题解析

一、题目

若函数

$f(x)$ $=$ $\left\{\begin{matrix} \frac{1-\cos\sqrt{x}}{ax}, x > 0 \\ b, x\leqslant 0 \end{matrix}\right.$

在 $x$ $=$ $0$ 处连续,则()

( A ) $ab$ $=$ $\frac{1}{2}$

( B ) $ab$ $=$ $-$ $\frac{1}{2}$

( C ) $ab$ $=$ $0$

( D ) $ab$ $=$ $2$

二、解析

这道题可以根据函数连续的定义解出。

函数 $f(x)$ 在某一点 $x_{0}$ 处连续的定义如下:

$\lim_{x \rightarrow x_{0^{-}}}$ $=$ $\lim_{x \rightarrow x_{0^{+}}}$ $=$ $f(x_{0})$

因此,若函数 $f(x)$ 在 $x$ $=$ $0$ 处连续,则根据定义的话,我们需要证明:

$\lim_{x \rightarrow 0^{-}}$ $=$ $\lim_{x \rightarrow 0^{+}}$ $=$ $f(0)$

观察题目可知,这是一个分段函数,且当 $x$ $\in$ $(- \infty, 0]$ 时,$f(x)$ $=$ $b$. 于是,当 $x$ 从左边趋近于 $0$ 时,$f(0^{-})$ $=$ $b$.

当 $x$ 从右边趋近于 $0$ 时,适用的取值范围为 $x$ $>$ $0$, 而对应的函数值为:

$\lim_{x \rightarrow 0^{+}}$ $f(x)$ $=$ $\lim_{x \rightarrow 0^{+}}$ $\frac{1-\cos\sqrt{x}}{ax}$

根据如下的等价无穷小原则:

$1$ $-$ $\cos x$ $\sim$ $\frac{1}{2}x^{2}$

于是有:

原式 $=$ $\lim_{x \rightarrow 0^{+}}$ $\frac{\frac{1}{2}(\sqrt{x})^{2}}{ax}$ $=$ $\frac{1}{2a}$

为了满足上面提到的函数在一点处连续的定义,需要有:

$\frac{1}{2a}$ $=$ $b$

化简形式得:

$ab$ $=$ $\frac{1}{2}$

由此可知,选 $A$.

EOF

使用定义判断函数的奇偶性

一、题目

判断函数 $f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$ 的奇偶性。

二、解析

本题用到的知识点

$\log_{a}(MN)$ $=$ $\log_{a}M$ $+$ $\log_{a}N$

在 MATLAB (下面的代码在 MATLAB 9.1.0.441655 (R2016b) 中测试通过) 中输入如下代码:

x=0:0.01:10;
semilogy(x,log(x))

可以绘制出 $y$ $=$ $\ln(x)$ 的图像:

图 1

有图像可以看到,自然对数 $\ln(x)$ 只在 $(0,+\infty)$ 的区间里有定义,不符合对数函数或者偶数函数对于“定义域 $X$ 关于原点对称”的要求。不过题目中的函数可以看作是一个符合函数,因此,我们还需要结合 $g(x)$ $=$ $x$ $+$ $\sqrt{1+x^{2}}$ 的定义域来确定 $f(x)$ 的定义域。

因为:

$\sqrt{1+x^{2}}$ $>$ $\sqrt{x^{2}}$ $>$ $|x|$ $>$ $0$.

则:

当 $x$ $\in$ $(-\infty,+\infty)$ 时 $x$ $+$ $\sqrt{1+x^{2}}$ $>$ $0$ 满足自然对数函数 $\ln(x)$ 对定义域的要求,而且,当 $x$ $=$ $0$ 时,$f(x)$ $=$ $\ln(1)$ $=$ $0$ , 也满足奇函数“当 $f(x)$ 在原点处有定义时,$f(0)$ $=$ $0$”的要求。

到这里,定义域的问题解决了,下面要解决的是函数是关于 $y$ 轴对称,还是关于原点对称的问题。

由于:

$f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$

$f(-x)$ $=$ $\ln(-x+\sqrt{1+x^{2}})$

则:

$f(x)$ $+$ $f(-x)$ $=$ $\ln(\sqrt{1+x^{2}}+x)$ $+$ $\ln(\sqrt{1+x^{2}}-x)$ $=$ $\ln[(\sqrt{1+x^{2}}+x)(\sqrt{1+x^{2}}-x)]$ $=$ $\ln(1+x^{2}-x^{2})$ $=$ $\ln(1)$ $=$ $0$

上面的运算结果符合奇函数的定义,因此,$f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$ 是一个奇函数。

此外,使用 WolframAlpha 画出的函数 $f(x)$ $=$ $\ln(x+\sqrt{1+x^{2}})$ 的图像如下:

图 2.

由图像我们也可以看出这是一个奇函数。

EOF

1998 年研究生入学考试数学二填空题第 1 题解析(三种方法)

一、题目

$\lim_{x \to 0}$ $\frac{\sqrt{1+x}+\sqrt{1-x}-2}{x^{2}}$ $=$

解法一

使用四则运算将原式化简,之后使用等价无穷小替换求出结果。

$\lim_{x \to 0}$ $\frac{\sqrt{1+x}+\sqrt{1-x}-2}{x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{(\sqrt{1+x}+\sqrt{1-x}-2)(\sqrt{1+x}+\sqrt{1-x}+2)}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$ $=$ $\lim_{x \to 0}$ $\frac{(\sqrt{1+x}+\sqrt{1-x})^{2}-4}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$ $=$ $\lim_{x \to 0}$ $\frac{1+x+1-x+2\sqrt{1+x}\sqrt{1-x}-4}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$ $=$ $\lim_{x \to 0}$ $\frac{2\sqrt{1+x}\sqrt{1-x}-2}{x^{2}(\sqrt{1+x}+\sqrt{1-x}+2)}$

由于当 $x$ $\rightarrow$ $0$ 时,$(\sqrt{1+x}$ $+$ $\sqrt{1-x})$ $\rightarrow$ $2$, 因此有:

$\lim_{x \to 0}$ $\frac{2\sqrt{1+x}\sqrt{1-x}-2}{4x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{2(\sqrt{1-x^{2}}-1)}{4x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{\sqrt{1-x^{2}}-1}{2x^{2}}$

根据等价无穷小的如下替换原则:

$(1+x)^{\mu }$ $-$ $1$ $\backsim$ $\mu$ $x$

详细内容可以参考荒原之梦网(zhaokaifeng.com)的这篇文章:高等数学中常用的等价无穷小

可知:

$\sqrt{1-x^{2}}$ $-$ $1$ $\backsim$ $-$ $\frac{1}{2}x^{2}$, 因此有:

$\lim_{x \to 0}$ $\frac{-\frac{1}{2}x^{2}}{2x^{2}}$ $=$ $-$ $\frac{1}{4}$

解法二

观察题目中的式子可以发现,当 $x$ $\rightarrow$ $0$ 时,满足以下条件:

(1) $\sqrt{1+x}$ $+$ $\sqrt{1-x}$ $-$ $2$ $\rightarrow$ $0$

(2) $x^{2}$ $\rightarrow$ $0$ 且 $x^{2}$ $\neq$ $0$

(3) $y$ $=$ $\sqrt{1+x}$ $+$ $\sqrt{1-x}$ $-$ $2$ 和 $y$ $=$ $x^{2}$ 在 $0$

附近两者都可导(在 $0$ 附近,导数存在且连续,故可导)。

综上可知,此处可以使用 $\frac{0}{0}$ 型的洛必达法则,即可以对分子和分母分别求导后再求极限来确定未定式的值。

求导过程如下:

原式 $=$ $\lim_{x \to 0}$ $\frac{\frac{1}{2\sqrt{1+x}} – \frac{1}{2 \sqrt{1-x}}}{2x}$ $=$ $\lim_{x \to 0}$ $\frac{\frac{1}{\sqrt{1+x}} – \frac{1}{\sqrt{1-x}}}{4x}$ $=$ $\lim_{x \to 0}$ $\frac{\sqrt{1-x}-\sqrt{1+x}}{4x(\sqrt{1+x} \times \sqrt{1-x})}$ $=$ $\lim_{x \to 0}$ $\frac{\sqrt{1-x} – \sqrt{1+x}}{4x \sqrt{1-x^{2}}}$

因为,当 $x$ $\rightarrow$ $0$ 时,$\sqrt{1-x^{2}}$ $\rightarrow$ $1$, 所以有:

$\lim_{x \to 0}$ $\frac{\sqrt{1-x}-\sqrt{1+x}}{4x}$

上面的计算过程依次是“求导 / 化简 / 化简 / 化简 / 化简”。下面开始正式使用 $\frac{0}{0}$ 型的洛必达法则进行计算:

$\overset{\frac{0}{0}}{\rightarrow}$ $\lim_{x \to 0}$ $=$ $-$ $\frac{\frac{1}{2\sqrt{1-x}} – \frac{1}{2\sqrt{1+x}}}{4}$

经过上面的求导,我们发现,当 $x$ $\rightarrow$ $0$ 时,$-$ $\frac{1}{2\sqrt{1-x}}$ $\rightarrow$ $-$ $\frac{1}{2}$, $-$ $\frac{1}{2\sqrt{1+x}}$ $\rightarrow$ $0$, 因此有:

原式 $=$ $\frac{-\frac{1}{2} – \frac{1}{2}}{4}$ $=$ $\frac{-(\frac{1}{2}+\frac{1}{2})}{4}$ $=$ $-$ $\frac{1}{4}$

在使用洛必达法则解决该问题的时候,进行了两次求导。其实,只要满足以下三个条件,则在使用洛必达法则的过程中可以进行任意次求导,但需要注意的是,每一次求导之前必须确保式子仍然满足如下三个条件,否则不能使用洛必达法则:

设:$y$ $=$ $\frac{f(x)}{g(x)}$, 则需满足:

(01) $x$ $\rightarrow$ $x_{0}$ 或 $x$ $\rightarrow$ $\infty$ 时,$f(x)$ 和 $g(x)$ 均趋于 $0$ 或者趋于 $\infty$;

(02) $f(x)$ 和 $g(x)$ 在 $x_{0}$ 的去心邻域可导且 ${g}'(x)$ $\neq$ $0$;

(03) $\frac{{f}'(x)}{{g}'(x)}$ 的极限存在或者为无穷大。

总结来说,洛必达法则的使用方法如下:

$\lim_{x \to x_{0}}$ $\frac{f(x)}{g(x)}$ $=$ $\lim_{x \to x_{0}}$ $\frac{{f}'(x)}{{g}'(x)}$

解法三

观察题目中的式子我们发现,可以使用麦克劳林展开式的 $(1+x)^{m}$ 的形式和皮亚诺余项对该题目进行计算,公式如下:

$(1+x)^{m}$ $=$ $1$ $+$ $mx$ $+$ $\frac{m(m-1)}{2!}$ $x^{2}$ $+$ $o(x^{2})$

代入公式可得:

$\sqrt{1+x}$ $=$ $(1+x)^{\frac{1}{2}}$ $=$ $1$ $+$ $\frac{1}{2}$ $x$ $+$ $\frac{\frac{1}{2} \times (\frac{1}{2}-1)}{2!}$ $x^{2}$ $+$ $o(x^{2}$ $)$ $=$ $1$ $+$ $\frac{1}{2}$ $x$ $-$ $\frac{1}{8}$ $x^{2}$ $+$ $o(x^{2})$

$\sqrt{1-x}$ $=$ $(1-x)^{\frac{1}{2}}$ $=$ $1$ $-$ $\frac{1}{2}$ $x$ $+$ $\frac{\frac{1}{2} \times (\frac{1}{2}-1)}{2!}$ $x^{2}$ $+$ $o(x^{2})$ $=$ $1$ $-$ $\frac{1}{2}$ $x$ $-$ $\frac{1}{8}$ $x^{2}$ $+$ $o(x^{2})$

于是有:

原式 $=$ $\lim_{x \to 0}$ $\frac{1+\frac{1}{2} x – \frac{1}{8} x^{2} + 1 – \frac{1}{2} x – \frac{1}{8} x^{2} + o(x^{2})-2}{x^{2}}$ $=$ $\lim_{x \to 0}$ $\frac{-\frac{1}{4} x^{2} + o(x^{2})}{x^{2}}$ $=$ $\lim_{x \to 0}$ $-$ $\frac{1}{4}$ $+$ $\frac{0(x^{2})}{x^{2}}$ $=$ $-$ $\frac{1}{4}$.

EOF

错题总结:明确求导过程中的自变量很关键

一、例题:对下面的函数求导

$f(x)$ $=$ $\sqrt{1+x}$ $+$ $\sqrt{1-x}$ $-$ $2$

二、错误的求导过程

${f}'(x)$ $=$ ${(\sqrt{1 + x})}’$ $+$ ${(\sqrt{1 – x})}’$ $+$ ${2}’$ $=$ ${((1 + x)^{\frac{1}{2}})}’$ $+$ ${((1 – x)^{\frac{1}{2}})}’$ $=$ $\frac{1}{2}$ $\frac{1}{\sqrt{1+x}}$ $+$ $\frac{1}{2}$ $\frac{1}{\sqrt{1-x}}$ $=$ $\frac{1}{2 \sqrt{1+x}}$ $+$ $\frac{1}{2 \sqrt{1-x}}$

上面这个计算过程是错的,错误的原因是在计算 $\sqrt{1+x}$ 的导数时把 $1+x$ 视作了自变量,也就是说把 $1$ $+$ $x$ 视作了求导对象;而在对 $\sqrt{1-x}$ 求导时,又把 $1$ $-$ $x$ 看作了求导自变量。

很显然,一个二维函数中不可能有两个不同的自变量,而且根据约定可知,当式子中出现 $f(x)$ 或者 $lim_{x \to 0}$ 时,就表明这个式子中的自变量是 $x$ 且求导也要对 $x$ 求导。

三、正确的求导过程

这里我们可以使用复合函数求导的链式法则计算本例题,复合函数的链式求导法则如下:

设 $y$ $=$ $f(u)$, $u$ $=$ $\mu(x)$, 如果 $\mu(x)$ 在 $x$ 处可导,$f(x)$ 在对应点 $u$ 处可导,则复合函数 $y$ $=$ $f[\mu(x)]$ 在 $x$ 处可导,且有:

$\frac{dy}{dx}$ $=$ $\frac{dy}{du}$ $\frac{du}{dx}$ $=$ ${f}'[\mu(x)]{\mu}'(x)$

于是,对于例题的正确求导过程如下:

${f}'(x)$ $=$ ${(\sqrt{1 + x})}’$ $+$ ${(\sqrt{1 – x})}’$ $+$ ${2}’$ $=$ ${((1 + x)^{\frac{1}{2}})}’$ $+$ ${((1 – x)^{\frac{1}{2}})}’$ $=$ $\frac{1}{2}(1 + x)^{-\frac{1}{2}}$ $+$ $\frac{1}{2}$ $(1 – x)^{-\frac{1}{2}}$ $=$ $\frac{1}{2}$ $(1 + x)^{-\frac{1}{2}} \times {(x)}’$ $+$ $\frac{1}{2}$ $(1 – x)^{-\frac{1}{2}} \times {(-x)}’$ $=$ $\frac{1}{2\sqrt{1+x}} – \frac{1}{2 \sqrt{1-x}}$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress