一、题目
$$
\int \cos^{2} t \mathrm{d} t = ?
$$
已知 $a$ 为常数,计算如下定积分:
$$
\int \frac{1}{a^{2} + x^{2}} \mathrm{d} x
$$
已知,当 $x$ $\rightarrow$ $0$ 时:
$$
(1+x)^{a} – 1 \sim ax
$$
其中,非齐次项 $f(t)$ $=$ $f(t)$ $=$ $d^{t}$ $\cdot$ $P_{m}(t)$, 其中,$d$ 为非零常数,$P_{m}(t)$ $=$ $b_{0}$ $+$ $b_{1}$ $t$ $+$ $\cdots$ $+$ $b_{m}$ $t^{m}$
且:$a$ $+$ $d$ $\neq$ $0$.
则,试取特解的形式 $y_{t}^{*}$ $=$ $?$
其中,非齐次项 $f(t)$ $=$ $f(t)$ $=$ $d^{t}$ $\cdot$ $P_{m}(t)$, 其中,$d$ 为非零常数,$P_{m}(t)$ $=$ $b_{0}$ $+$ $b_{1}$ $t$ $+$ $\cdots$ $+$ $b_{m}$ $t^{m}$
且:$a$ $+$ $d$ $\neq$ $0$.
则,试取特解的形式 $y_{t}^{*}$ $=$ $?$
其中,非齐次项 $f(t)$ $=$ $P_{m}(t)$ $=$ $b_{0}$ $+$ $b_{1}$ $t$ $+$ $\cdots$ $+$ $b_{m}$ $t^{m}$
且:$a$ $=$ $-1$.
则,试取特解的形式 $y_{t}^{*}$ $=$ $?$
其中,非齐次项 $f(t)$ $=$ $P_{m}(t)$ $=$ $b_{0}$ $+$ $b_{1}$ $t$ $+$ $\cdots$ $+$ $b_{m}$ $t^{m}$
且:$a$ $\neq$ $-1$.
则,试取特解的形式 $y_{t}^{*}$ $=$ $?$
$\overline{y_{t}}$ 与 $\widetilde{y_{t}}$ 分别是差分方程 $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f_{1}(t)$ 和 $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f_{2}(t)$ 的解。
则,以下哪个选项是差分方程 $y_{t+1}$ $+$ $a$ $y_{t}$ $=$ $f_{1}(t)$ $+$ $f_{2}(t)$ 的解?
$y^{*}$ 是非齐次差分方程的一个特解;$y_{C}(t)$ 是相应齐次差分方程的通解。
则,相应的非齐次差分方程的通解为:$y_{t}$ $=$ $?$
观察可知,方程 $y^{\prime \prime}$ $=$ $f(y, y^{\prime})$ 的特点是不显含自变量 $x$, 于是
令 $u$ $=$ $y^{\prime}$, 则有 $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ $=$ $\frac{\mathrm{d} u}{\mathrm{~d} x}$ $=$ $\frac{\mathrm{d} u}{\mathrm{~d} y}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}$ $=$ $u$ $u^{\prime}$.
于是,微分方程 $y^{\prime \prime}$ $=$ $f(y, y^{\prime})$ 变为一个以 $y$ 为自变量,$u(y)$ 为末知函数的一阶微分方程:
$u$ $u^{\prime}$ $=$ $f(y, u)$.