2024年考研数二第05题解析:二元函数在一点处可微的判定、有界震荡无极限

一、题目题目 - 荒原之梦

已知函数 $f(x, y)$ $=$ $\left\{\begin{array}{l}\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}, & x y \neq 0 \\ 0, & x y=0\end{array}\right.$, 则在点 $(0,0)$ 处

(A) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 可微

(B) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 不可微

(C) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 可微

(D) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 不可微

难度评级:

继续阅读“2024年考研数二第05题解析:二元函数在一点处可微的判定、有界震荡无极限”

考研线性代数思维导图:06-克拉姆法则 [XD-20250201]

涉及的知识点

01. 克拉默法则的基础概念
02. 用克拉默法则判断解的特征
03. 克拉默法则与齐次线性方程组

继续阅读“考研线性代数思维导图:06-克拉姆法则 [XD-20250201]”

2024年考研数二第04题解析:用特例法求解判断数列的敛散性

一、题目题目 - 荒原之梦

已知数列 $\left\{a_n\right\}\left(a_n \neq 0\right)$, 若 $\left\{a_n\right\}$ 发散, 则 ( )

(A) $\left\{a_n+\frac{1}{a_n}\right\}$ 发散

(B) $\left\{a_n-\frac{1}{a_n}\right\}$ 发散

(C) $\left\{e^{a_n}+\frac{1}{e^{a_n}}\right\}$ 发散

(D) $\left\{e^{a_n}-\frac{1}{e^{a_n}}\right\}$ 发散

难度评级:

继续阅读“2024年考研数二第04题解析:用特例法求解判断数列的敛散性”

考研高等数学思维导图:05-导数的应用 [GS-20250201]

涉及的知识点

01. 函数的极值
02. 极值存在的必要条件
03. 极值存在的充分条件
04. 极值存在的充要条件
05. 求函数最值得方法

06. 凹凸性得判定
07. 常见得特征点
08. 渐近线
09. 曲率、曲率半径、曲率圆

继续阅读“考研高等数学思维导图:05-导数的应用 [GS-20250201]”

考研线性代数思维导图:05-计算抽象型行列式的常用公式 [XD-20250201]

涉及的知识点

01. 计算抽象型行列式的常用公式
02. 抽象型行列式的补充特例

继续阅读“考研线性代数思维导图:05-计算抽象型行列式的常用公式 [XD-20250201]”

考研线性代数思维导图:04-计算具体型行列式的常用公式 [XD-20250201]

涉及的知识点

01. 上/下三角形行列式对角线元素的性质
02. 反上/下三角形行列式对角线元素的性质
03. 拉普拉斯展开式
04. 范德蒙行列式

继续阅读“考研线性代数思维导图:04-计算具体型行列式的常用公式 [XD-20250201]”

考研高等数学思维导图:03-导数和微分 [GS-20250201]

涉及的知识点

01. 一点处导数的定义
02. 左右导数
03. 导数的几何意义
04. 微分的定义
05. 导数的运算法则
06. 基本求导公式
07. 莱布尼兹公式

08. 可微的充要条件
09. 可导与连续的关系
10. 复合函数求导
11. 反函数求导
12. 隐函数求导
13. 变量交替求导
14. 参数方程求导

继续阅读“考研高等数学思维导图:03-导数和微分 [GS-20250201]”

2024年考研数二第03题解析:奇奇复合才为奇,有偶复合必为偶

一、题目题目 - 荒原之梦

设函数 $f(x)$ $=$ $\int_{0}^{\sin x} \sin t^{3} \mathrm{~d} t$, $g(x)=\int_{0}^{x} f(t) \mathrm{~d} t$, 则 ($\quad$)

(A) $f(x)$ 是奇函数, $g(x)$ 是奇函数
(B) $f(x)$ 是奇函数, $g(x)$ 是偶函数
(C) $f(x)$ 是偶函数, $g(x)$ 是偶函数
(D) $f(x)$ 是偶函数, $g(x)$ 是奇函数

难度评级:

继续阅读“2024年考研数二第03题解析:奇奇复合才为奇,有偶复合必为偶”

考研线性代数思维导图:03-行列式按行(列)展开定理 [XD-20250201]

涉及的知识点

01. 用代数余子式求行列式的值
02. 代数余子式的“错位得零”性质

继续阅读“考研线性代数思维导图:03-行列式按行(列)展开定理 [XD-20250201]”

考研高等数学思维导图:02-连续性与间断点 [GS-20250201]

涉及的知识点

01. 函数在一点处连续的定义
02. 第一类间断点
03. 第二类间断点
04. 闭区间上连续函数的定义

继续阅读“考研高等数学思维导图:02-连续性与间断点 [GS-20250201]”

考研线性代数思维导图:02-余子式和代数余子式 [XD-20250201]

涉及的知识点

01. 余子式的定义
02. 代数余子式的定义
03. 代数余子式与元素位置无关定理

继续阅读“考研线性代数思维导图:02-余子式和代数余子式 [XD-20250201]”

考研高等数学思维导图:01-极限 [GS-20250201]

涉及的知识点

01. 极限存在的充要条件
02. 极限存在的准则
03. 两类主要极限
04. $e$ 抬起
05. 极限的重要性质
06. 极限的四则运算法则

07. 无穷小量的运算性质
08. 极限与无穷小的关系
09. 无穷小的比较
10. 常用的等价无穷小
11. 几个重要极限
12. 洛必达法则

继续阅读“考研高等数学思维导图:01-极限 [GS-20250201]”

考研线性代数思维导图:01-行列式的性质 [XD-20250201]

涉及的知识点

01. 转置行列式
02. 行列式外的数乘
03. 行列式的拆分
04. 含有全零行或列的行列式
05. 含有相等行或列的行列式

06. 行或列成比例的行列式
07. 行列式内的数乘
08. 交换行列式的两行或两列
09. 行列式的本质

继续阅读“考研线性代数思维导图:01-行列式的性质 [XD-20250201]”

考研高等数学思维导图:00-常用的中学公式 [GS-20250201]

涉及的知识点

01. 常见函数的图形
02. 因式分解
03. 常见不等式
04. 对数运算
05. 数列
06. 排列组合
07. 一元二次方程

08. 三角函数
09. 函数与反函数
10. 常用数值
11. 偶函数和奇函数
12. 虚数
13. 充分条件和必要条件
14. 补充内容

继续阅读“考研高等数学思维导图:00-常用的中学公式 [GS-20250201]”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress