一、题目
已知函数 $f(x, y)$ $=$ $\left\{\begin{array}{l}\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}, & x y \neq 0 \\ 0, & x y=0\end{array}\right.$, 则在点 $(0,0)$ 处
(A) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 可微
(B) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 不可微
(C) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 可微
(D) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 不可微
难度评级:
继续阅读“2024年考研数二第05题解析:二元函数在一点处可微的判定、有界震荡无极限”