一般的一维正态分布到标准正态分布的转换公式与例题详解

一、前言 前言 - 荒原之梦

标准正态分布具有很多独特的性质,因此,一般的普通正态分布到标准正态分布的转换,也是概率统计这门学科经常考察的一个知识点。

在本文中,我们只考虑一维情况下的一般正态分布(普通正态分布)到标准正态分布的转换公式以及例题。

继续阅读“一般的一维正态分布到标准正态分布的转换公式与例题详解”

事件的对立操作将使得事件的从属关系发生逆转

一、题目题目 - 荒原之梦

难度评级:

继续阅读“事件的对立操作将使得事件的从属关系发生逆转”

交集和并集相等的两个事件一定是相同的事件

一、题目题目 - 荒原之梦

难度评级:

继续阅读“交集和并集相等的两个事件一定是相同的事件”

并集表示“或”,交集表示“且”

一、题目题目 - 荒原之梦

若用 $A$, $B$, $C$ 表示三个事件,请用 $A$, $B$, $C$ 以及概率论中的运算符号,表示下列事件:

  1. $A$, $B$, $C$ 都发生;
  2. $A$, $B$, $C$ 都不发生;
  3. $A$ 发生,但 $B$ 与 $C$ 不发生;
  4. $A$ 与 $B$ 都发生,但 $C$ 不发生;
  5. $A$, $B$, $C$ 中至少有一个发生;
  6. $A$, $B$, $C$ 中至多有一个发生;
  7. $A$, $B$, $C$ 中至多有两个发生;
  8. $A$, $B$, $C$ 中至少有两个发生。

难度评级:

继续阅读“并集表示“或”,交集表示“且””

空集和空集及任何集合相互独立,全集与全集及任何集合也相互独立

一、题目题目 - 荒原之梦

难度评级:

继续阅读“空集和空集及任何集合相互独立,全集与全集及任何集合也相互独立”

2020 年研究生入学考试数学一选择题第 7 题解析

一、题目

设 $A$, $B$, $C$ 为三个随机事件,且 $P(A)$ $=$ $P(B)$ $=$ $P(C)$ $=$ $\frac{1}{4}$, $P(AB)$ $=$ $0$, $P(AC)$ $=$ $P(BC)$ $=$ $\frac{1}{12}$, 则 $A$, $B$, $C$ 中恰有一个发生的概率为 ( )

A. $\frac{3}{4}$

B. $\frac{2}{3}$

C. $\frac{1}{2}$

D. $\frac{5}{12}$

继续阅读“2020 年研究生入学考试数学一选择题第 7 题解析”

2011 年研究生入学考试数学一填空题第 6 题解析

一、题目

设二维随机变量 $(X,Y)$ 服从正态分布 $N(\mu,\mu;\sigma^{2},\sigma^{2};0),$ 则 $E(XY^{2})=$____.

二、解析

由于在正态分布 $X \sim $ $N(\mu, \sigma^{2})$中 $E(X)=\mu$, $D(X)=\sigma^{2}.$ 而且二维正态分布中依然遵循这一定理。

于是,根据题目中的条件我们知道,$E(X)=$ $E(Y)=\mu$, $D(X)=$ $D(Y)=$ $\sigma^{2}.$

又由 $\rho=0$ 我们知道,$X$ 与 $Y$ 相互独立。根据随机变量的独立性中的如下性质:

若 $X_{1},X_{2},$ $\dots ,$ $ X_{n},$ $Y_{1},$ $Y_{2},$ $\dots ,$ $ Y_{m}$ 相互独立,$f(\cdot)$ 为 $n$ 元连续函数且 $g(\cdot)$ 为 $m$ 元连续函数,则 $f(X_{1},X_{2}, \cdots , X_{n})$ 与 $g(X_{1},X_{2}, \cdots , X_{m})$ 也相互独立。

因此,我们知道,$X$ 与 $Y^{2}$ 也相互独立,于是有:
$E(XY^{2})=$ $E(X)E(Y^{2})=$ $E(X) \times [D(Y)+E^{2}(Y)]=$ $\mu(\sigma^{2}+\mu^{2}).$

综上可知,本题的正确答案是:$\mu(\sigma^{2}+\mu^{2})$.

EOF

2015 年研究生入学考试数学一填空题第 6 题解析

一、题目

设二维随机变量$(X,Y)$ 服从正态分布 $N(1,0;1,1;0),P\{XY-Y<0\}=$____.

二、解析

解答本题需要掌握正态分布和二维正态分布两部分知识。

1. 正态分布

正态分布通常用下面的公式表示:

$$X \sim N(\mu,\sigma^{2}).$$

其中 $\mu$ 表示数学期望(或称“均数”),$\sigma^{2}$ 表示方差,$\sigma$ 表示标准差。

参数 $\mu$ 决定了正态分布的分布图像在坐标系中的位置,正态分布的图像以 $x$ $=$ $\mu$ 为对称轴,左右完全对称。在正态分布中,数学期望 $=$ 均数 $=$ 中位数 $=$ 众数 $=$ $\mu.$

参数 $\sigma^{2}$ 决定了正态分布中随机变量的离散程度,$\sigma$ 越小,数据就越集中,反之,若 $\sigma$ 越大,数据就越集中。反应在正态分布的图像中就是,当 $\sigma$ 越小的时候,正态分布的图像越窄高,$\sigma$ 越大的时候,正态分布的图像越扁平。

正态分布的图像在 $(\mu – \sigma, \mu + \sigma)$ 区间内存在拐点,拐点附近的形状上表现为中间高两边低的特点。

特别地,$X \sim N(0,1)$ 为标准正态分布,其分布图象关于 $y$ 轴对称。

如图 1 是几种不同的正态分布图像,反映了参数 $\mu$ 和 $\sigma$ 对正态分布图像的影响,其中红色线表示的为标准正态分布:

图 1. 由Inductiveload – self-made, Mathematica, Inkscape,公有领域,https://commons.wikimedia.org/w/index.php?curid=3817954

2. 二维正态分布

二维正态分布可记作如下形式:

$(X,Y)$ $\sim$ $N(\mu_{1},\mu_{2};\sigma_{1}^{2},\sigma_{2}^{2};\rho).$

在本题中,需要用到关于二维正态分布的如下两个性质:

① $X$ $\sim$ $N(\mu_{1},\sigma_{1}^{2})$; $Y$ $\sim N(\mu_{2},\sigma_{2}^{2})$;

② $X$ 与 $Y$ 独立的充要条件是 $\rho=0.$ 我们可以使用如下 MATLAB 代码绘制二维正态分布条件概率密度函数图像:

x=-5:0.01:5;
y=-5:0.01:5;
mu=[-1,2];
sigma=[1 1; 1 3]; %输入均值向量和协方差矩阵,可以根据需要修改
[X,Y]=meshgrid(x,y); %产生网格数据并处理
p=mvnpdf([X(:),Y(:)],mu,sigma);
P=reshape(p,size(X)); %求取联合概率密度
figure(2)
surf(X,Y,P)
shading interp
colorbar
title('二维正态分布条件概率密度函数图像');

我在 MATLAB R2016b 上运行上述代码得到的二维正态分布条件概率密度函数图像如图 2 所示:

图 2. 二维正态分布条件概率密度函数图像

关于本题所用到的知识点的介绍就到这里结束,下面是具体的做题过程。

由题可知,$\rho=0,$ 因此,$X$ 与 $Y$ 相互独立,根据“随机变量的独立性”中的定理,我们知道,这也就意味着:

$$P\{X,Y\}=P\{X\}P\{Y\}.$$

于是,我们有:

$P\{XY-Y<0\}$ $=$ $P\{Y(X-1)<0\}$ $=$ $P\{Y>0,X-1<0\}$ $+$ $P\{Y<0,X-1>0\}$ $=$ $P\{Y>0,X<1\}+P\{Y<0,X>1\}$ $=$ $P\{Y>0\}P\{X<1\}$ $+$ $P\{Y<0\}P\{X>1\}$ $=$ $\frac{1}{2}$ $\times$ $\frac{1}{2}$ $+$ $\frac{1}{2}$ $\times$ $\frac{1}{2}$ $=$ $\frac{1}{2}.$

综上可知,本题的正确答案是:$\frac{1}{2}$

EOF

2010 年研究生入学考试数学一填空题第 6 题解析

一、题目

设随机变量 $X$ 的概率分布为 $P{X=k}=\frac{C}{k!},k=0,1,2,\dots.$, 则 $E(X^{2})=$__.

二、解析

根据题目中给出的分布函数(概率分布函数)的形式,我们可以知道,这是一个泊松分布。

泊松分布的公式如下:

$P{X=k}$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$, $(k=0,1,2,\dots).$

于是我们有:

$C$ $=$ $\lambda^{k}e^{-\lambda}.$

由于在泊松分布中,$D(X)$ $=$ $E(X)$ $=$ $\lambda.$

而且我们知道 $D(X)$ 和 $E(X)$ 有如下关系:

$D(X)$ $=$ $E(X^2)-E^{2}(X)$ $\Rightarrow$ $E(X^{2})$ $=$ $D(X)$ $+$ $E^{2}(X)$ $=$ $\lambda$ $+$ $\lambda^{2}.$

因此,只要我们求出 $\lambda$ 的数值,也就是用 $C$ 表示出 $\lambda$ 就可以解出答案。

但是,这个思路是走不通的,一是因为通过 $C=\lambda^{k}e^{-\lambda}$ 用 $C$ 表示出 $\lambda$ 的计算十分复杂,其二是因为即便能够用 $C$ 表达出 $\lambda$, 那么表达式中也会含有未知变量 $k$.

因此可知,这道题还需要找一些隐含的条件,走另外的解题思路。

既然从源头开始想出来的解题思路有问题,那么我们就倒着想,看看为了计算出最终的结果,我们需要哪些条件。我们可以确定的是,无论采取哪种方法,要想解出 $E(X^{2})$, 就必须知道 $D(X)$ 和 $E^{2}(X)$, 因此(根据泊松分布的特性)我们需要知道 $\lambda$ 的数值,而要知道 $\lambda$ 的数值必然需要通过已知的常数 $C$ 来确定,根据公式,$C$ 与 $\lambda$ 同时出现的情况只在下面这个公式中存在:

$\frac{C}{k!}$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}.$

但是,上面这个公式中存在一个未知量 $k.$

至此,无论我们接下来采取什么解题思路,一个首要的问题就是要移除未知量 $k$ 这个障碍。

如何移除呢?题目中并没有给出 $k$ 的值,也没有可供解出 $k$ 的关系式。不过,既然要解出 $k$ 就先来想想 $k$ 的含义吧。

在泊松分布的定义中,$X$ 是随机变量,由泊松分布公式中的 “$P{X=k}$” 我们知道,$k$ 就是用来给 $X$ 赋值的,不同的 $k$ 值对应不同的概率,而 $k$ 的取值范围是 $0,1,2,\dots n.$ 根据概率分布函数的特点我们知道,在一次随机实验中,一定会有一个随机变量发生,如果我们手里有全部的随机变量,那么在任何一次实验中都会有一个随机变量在我们手里发生,从整体上看这就是一个必然事件。

于是,我们知道,如果让 $k$ 取到所有可能取到的值并计算概率,之后把这些概率相加,那么和一定是 $1$, 即:

$\sum_{k=0}^{\infty}$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $=$ $\sum_{k=0}^{\infty}$ $\frac{C}{k!}$ $=$ $C\sum_{k=0}^{\infty}\frac{1}{k!}$ $=1.$

这里需要我们知道一个额外的知识点,就是自然常数(自然对数的底数) $e$ 的表示方法。

$e$ 有两种表示方法,如下:

方法一:$e=\lim_{n \rightarrow \infty}(1+\frac{1}{n})^{n}.$

方法二:$e=\sum_{n=0}^{\infty}\frac{1}{n!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\dots\frac{1}{n!}.$

注意:$0!=1.$

于是,我们有:

$C\sum_{k=0}^{\infty}$ $\frac{1}{k!}$ $=$ $Ce$ $=$ $1$ $\Rightarrow C$ $=$ $\frac{1}{e}$ $=$ $e^{-1}.$

又因为 $C$ $=$ $\lambda^{k}e^{-\lambda},$ 我们有:

$\lambda^{k}e^{-\lambda}$ $=$ $e^{-1}.$

于是有:

$\lambda$ $=$ $1$, $k=1.$

到这里就解出 $\lambda$ 的数值了,再结合前面的分析,我们就可以解出 $E(X^{2}):$

$E(X^2)$ $=$ $\lambda+\lambda^{2}$ $=$ $1$ $+$ $1^{2}$ $=$ $1$ $+$ $1$ $=$ $2.$

综上可知,本题的正确答案是:$2$

EOF

2012 年研究生入学考试数学一填空题第 6 题解析

一、题目

设 $A,B,C$ 是随机事件,$A$ 与 $C$ 互不相容,$P(AB)$ $=$ $\frac{1}{2}$, $P(C)$ $=$ $\frac{1}{3}$, 则 $P(AB|\bar{C})$ $=$__.

二、解析

$A$与 $C$ 互不相容 $\Rightarrow$ $A$ $\cap$ $C$ $=$ $\phi$ $\Rightarrow$ $P(AC)$ $=$ $P(\phi)$ $=$ $P(\phi \cap B)$ $\Rightarrow$ $P(AC \cap B)$ $=$ $0$.

于是,我们有:

$P(AB|\bar{C})$ $=$ $\frac{P(AB \bar{C})}{P(\bar{C})}$ $=$ $\frac{P[AB(1-C)]}{1-P(C)}$ $=$ $\frac{P(AB-ABC)}{1-P(C)}$ $=$ $\frac{P(AB)-P(AB \cap ABC)}{1-P(C)}$ $=$ $\frac{P(AB)-P(ABC)}{1-P(C)}$ $=$ $\frac{\frac{1}{2}-0}{\frac{2}{3}}$ $=$ $\frac{1}{2}$ $\times$ $\frac{3}{2}$ $=$ $\frac{3}{4}$.

综上可知,正确答案:$\frac{3}{4}$.

EOF

2008 年研究生入学考试数学一选择题第 6 题解析

一、题目

设随机变量 $X$ 服从参数为 $1$ 的泊松分布,则 $P {X=E(X^{2})}$ $=$__.

二、解析

每年考研数学一试卷中填空题的最后一题基本都是考一个概率论中的知识。本题考察的知识很明确,就是:泊松分布。

泊松分布的概念如下:

设随机变量 $X$ 的概率分布为:


$P {X=k}$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $(\lambda>0,k=0,1,2,3 \dots)$


则称 $X$ 服从参数为 $\lambda$ 的泊松分布,记为 $X$ $\backsim$ $P(\lambda)$.

此外,在泊松分布中,数学期望 $E(X)$ $=$ $\lambda$, 方差 $D(X)$ $=$ $\lambda$.

最后,我们还需要知道 $E(X)$ 与 $D(X)$ 的关系公式:

$D(X)$ $=$ $E(X^{2})$ $-$ $[E(X)]^{2}$.

由题目信息可知,该题中泊松分布的参数 $\lambda=1$, 于是我们知道:

$E(X)$ $=$ $D(X)$ $=$ $1$.

由于题目中要求的表达式中含有 “$E(X^{2})$”, 而在 $E(X)$ 与 $D(X)$ 的关系式中也含有 “$E(X^{2})$”, 于是,我们有:

$E(X^{2})$ $=$ $D(X)$ $+$ $[E(X)]^{2}$.

进而有:

$E(X^{2})$ $=$ $1$ $+$ $1^{2}$ $=$ $1$ $+$ $1$ $=$ $2$.

于是,我们要求的表达式就变成了:

$P{X=E(X^{2})}$ $\Rightarrow$ $P{X=2}$.

至此,我们已经知道了泊松分布的计算公式中的两个未知量的数值,分别是:

$\lambda$ $=$ $1$, $k$ $=$ $E(X^{2})$ $=$ $2$.

于是,根据泊松分布的计算公式,我们有:

$P$ $=$ $\frac{\lambda^{k}e^{-\lambda}}{k!}$ $=$ $\frac{1^{2}e^{-1}}{2!}$ $=$ $\frac{e^{-1}}{2 \times 1}$ $=$ $\frac{1}{e}$ $\times$ $\frac{1}{2}$ $=$ $\frac{1}{2e}$.

综上可知,正确答案就是:$\frac{1}{2e}$.

EOF

2017 年研究生入学考试数学一选择题第 7 题解析

一、题目

设 $A$, $B$ 为随机事件,若 $0$ $<$ $P(A)$ $<$ $1$, $0$ $<$ $P(B)$ $<$ $1$, 则 $P(A|B)$ $>$ $P(A|\bar{B})$ 的充分必要条件是 ( )

( A ) $P(B|A)$ $>$ $P(B|\bar{A})$.

( B ) $P(B|A)$ $<$ $P(B|\bar{A})$.

( C ) $P(\bar{B}|A)$ $>$ $P(B|\bar{A})$.

( D ) $P(\bar{B}|A)$ $<$ $p(B|\bar{A})$.

二、解析

本题中要找的是“充分必要条件”。根据充分必要条件的含义我们知道,如果事件 $A$ 和 $B$ 要满足充要条件就要有 $A$ $\rightarrow$ $B$ 且 $B$ $\rightarrow$ $A$.

但是,如果满足以下情况,也可以确定 $A$ 与 $B$ 是互相的充要条件:

设有事件 $A$, $B$, $C$, 当存在以下情况:

$A$ $\rightarrow$ $C$ 且 $C$ $\rightarrow$ $A$ 且 $B$ $\rightarrow$ $C$ 且 $C$ $\rightarrow$ $B$, 则 $A$ 与 $B$ 是互相的充要条件。

对于本题而言,直接把题目中所给的形式 $P(A|B)$ $>$ $P(A|\bar{B})$ 转换成选项中所给的形式,以及把选项中的形式转换成题目中所给的形式,可能难度比较大。这里我们可以考虑化简题目中所给的形式,之后再化简选项中所给的形式,由于化简过程中都是全程使用的等价符号,因此化简前的原式和化简后得到的形式是互为充要条件的,如果选项中的化简结果和题目中的化简结果一样,则可以说明它们之间存在互为充要条件的关系。

首先对题目中的原式进行化简,根据条件概率的公式,我们有:

$P(A|B)$ $>$ $P(A|\bar{B})$ $\Rightarrow$ $\frac{P(AB)}{P(B)}$ $>$ $\frac{P(A \bar{B})}{P(\bar{B})}$.

又因为:

$P(A \bar{B})$ $=$ $P[A(1-B)]$ $=$ $P(A-AB)$ $=$ $P(A)$ $-$ $P(AAB)$ $=$ $P(A)$ $-$ $P(AB)$.

所以有:

原式 $\Rightarrow$ $\frac{P(AB)}{P(B)}$ $>$ $\frac{P(A) – P(AB)}{1-P(B)}$ $\Rightarrow$ $P(AB)[1-P(B)]$ $>$ $P(B)[P(A)-P(AB)]$ $\Rightarrow$ $P(AB)$ $-$ $P(AB)P(B)$ $>$ $P(B)P(A)$ $-$ $P(B)P(AB)$ $\Rightarrow$ $P(AB)$ $>$ $P(A)P(B)$.

接下来,通过观察题目我们知道,$A$ 选项和 $B$ 选项的区别只是大于和小于符号,$C$ 选项和 $D$ 选项的区别也是如此。因此,我们只需要分别对 $A$ 选项和 $C$ 选项进行计算就可以确定哪个是正确选项了。

对 $A$ 选项进行化简:

$P(B|A)$ $>$ $P(B|\bar{A})$ $\Rightarrow$ $\frac{P(AB)}{P(A)}$ $>$ $\frac{P( \bar{A} B)}{P(\bar{A})}$.

又因为:

$P(\bar{A}B)$ $=$ $P[(1-A)B]$ $=$ $P(B-AB)$ $=$ $P(B)$ $-$ $P(ABB)$ $=$ $P(B)$ $-$ $P(AB)$.

所以有:

$\frac{P(AB)}{P(A)}$ $>$ $\frac{P(B) – P(AB)}{1-P(A)}$ $\Rightarrow$ $P(AB)[1-P(A)]$ $>$ $P(A)[P(B)$ $-$ $P(AB)]$ $\Rightarrow$ $P(AB)$ $-$ $P(AB)P(A)$ $>$ $P(A)P(B)$ $-$ $P(A)P(AB)$ $\Rightarrow$ $P(AB)$ $>$ $P(A)P(B)$.

由此,我们知道,$A$ 选项对,$B$ 选项错。

为了保险起见,我们可以在对 $C$ 选项做一个计算:

$P(\bar{B}|A)$ $>$ $P(B| \bar{A})$ $\Rightarrow$ $\frac{P(A \bar{B})}{P(A)}$ $>$ $\frac{P(\bar{A}B)}{P(\bar{A})}$ $\Rightarrow$ $P(A \bar{B})P(\bar{A})$ $>$ $P(\bar{A}B)P(A)$.

又因为:

$P(A \bar{B})$ $=$ $P(A)$ $-$ $P(AB)$;

$P(\bar{A} B)$ $=$ $P(B)$ $-$ $P(AB)$.

所以有:

$[P(A)$ $-$ $P(AB)][1-P(A)]$ $>$ $[P(B)$ $-$ $P(AB)]P(A)$ $\Rightarrow$ $P(A)$ $-$ $P(A)P(A)$ $-$ $P(AB)$ $+$ $P(AB)P(A)$ $>$ $P(B)P(A)$ $-$ $P(AB)P(A)$ $\nRightarrow$ $P(AB)$ $>$ $P(A)P(B)$.

因此,可以知道,选项 $C$ 和 $D$ 都不正确。

综上可知,正确选项是:$A$.

EOF

2014 年研究生入学考试数学一选择题第 7 题解析

一、题目

设随机事件 $A$ 与 $B$ 相互独立,且 $P(B)$ $=$ $0.5$ ,$P(A-B)$ $=$ $0.3$, 则 $P(B-A)$ $=$ ( )

( A ) $0.1$

( B ) $0.2$

( C ) $0.3$

( D ) $0.4$

二、解析

本题的关键点是“相互独立”,即 $A$ 事件与 $B$ 事件是两个相互独立的事件,$A$ 事件的发生不会影响 $B$, $B$ 事件的发生也不会影响 $A$. 由于 $A$ 事件的发生与否都不影响 $B$ 事件的发生与否,由此我们知道,若 $A$ 与 $B$ 相互独立,那么 $A$ 与 $\bar{B}$ 也相互独立,$B$ 与 $\bar{A}$ 同样相互独立。因此,我们可以在接下来的计算中,使用带有 $\bar{A}$ 和 $\bar{B}$ 的式子代替带有 $A$ 与 $B$ 的式子进行化简。

根据概率论中关于事件的独立性方面的相关知识,我们知道:

$A$与 $B$ 相互独立 $\Leftrightarrow$ $P(AB)$ $=$ $P(A)P(B)$.

综上,于是有:

$P(AB)$ $=$ $P(A)P(B)$;

$P(A \bar{B})$ $=$ $P(A)P(\bar{B})$;

$P(\bar{A}B)$ $=$ $P(\bar{A})P(B)$;

根据概率论减法公式,我们知道(这个公式没有设置 $A$ 和 $B$ 的关系,即是说,只要 $A$ 和 $B$ 是两个事件就是用这个公式计算,自然也可以应用于相互独立的事件。):

$P(B-A)$ $=$ $P(B)$ $-$ $P(AB)$.

题目中给出的条件有:

$P(B)$ $=$ $0.5$, $P(A-B)$ $=$ $0.3$

根据逆事件(对立事件)的知识,我们还知道:

$P(\bar{B})$ $=$ $1$ $-$ $P(B)$ $=$ $0.5$;

$P(B)$ $=$ $1$ $-$ $P(\bar{B})$ $=$ $0.5$.

于是,将 $P(A-B)$ 中的 $B$ 用 $\bar{B}$ 替换后得到:

$P(A-B)$ $=$ $P(A)$ $-$ $P(AB)$ $=$ $P(A)$ $-$ $P[A(1-\bar{B})]$ $=$ $P(A)$ $-$ $P(A-A \bar{B})$ $=$ $P(A)$ $-$ $[P(A)$ $-$ $P(AA \bar{B})]$ $=$ $P(A)$ $-$ $P(A)$ $+$ $P(A \bar{B})$ $=$ $P(A \bar{B})$ $=$ $P(A)P(\bar{B})$ $=$ $P(A)$ $\cdot$ $0.5$ $=$ $0.3$.

注:由于 $A$ $\cap$ $A$ $=$ $A$, 即 $AA$ $=$ $A$, 所以:$P(A)$ $-$ $P(AA \bar{B})$ $=$ $P(A)$ $-$ $P(A \bar{B})$, 下面的类似计算过程中将省略这一步。

于是有:$P(A)$ $=$ $\frac{0.3}{0.5}$ $=$ $0.6$.

又因为:

$P(B-A)$ $=$ $P(B)$ $-$ $P(AB)$ $=$ $P(B)$ $-$ $P[(1- \bar{A})B]$ $=$ $P(B)$ $-$ $P(B-\bar{A}B)$ $=$ $P(B)$ $-$ $P(B)$ $+$ $P(\bar{A}B)$ $=$ $P(\bar{A}B)$ $=$ $P(\bar{A})P(B)$.

由于,$P(A)$ $=$ $0.6$, 则,$P(\bar{A})$ $=$ $0.4$.

于是有:

$P(B-A)$ $=$ $P(\bar{A})P(B)$ $=$ $0.4$ $\cdot$ $0.5$ $=$ $0.2$.

综上可知,本题的正确选项是:$B$.

三、一个错误的解法

本文开头提到了,本题的关键点是“相互独立”。如果没有注意到这个关键点会发生什么呢?没有注意到这个关键点的话,可能会出现如下错误的思考方式和解法。

在概率论中有一个公式是下面这样的:

$P(B-A)$ $=$ $P(B)$ $-$ $P(A)$.

如果根据这个公式计算,那么本题将十分简单(数学一中也不会出这么“直观”的题吧 :-)):

已知:$P(B)$ $=$ $0.5$, $P(A-B)$ $=$ $0.3$, 那么:

$P(A-B)$ $=$ $P(A)$ $-$ $P(B)$ $=$ $P(A)$ $-$ $0.5$ $=$ $0.3$ $\Rightarrow$ $P(A)$ $=$ $0.8$ $\Rightarrow$ $P(B-A)$ $=$ $P(B)$ $-$ $P(A)$ $=$ $0.5$ $-$ $0.8$ $=$ $-0.3$.

但是,我们观察选项可知,并没有哪个选项是 $-0.3$, 而且 $P(B-A)$ $=$ $P(B)$ $-$ $P(A)$ 这个公式是有前提条件的,那就是:

很显然,在独立事件中,不可能出现 $A$ $\subset$ $B$ 或者 $B$ $\subset$ $A$ 的情况。

因此我们知道,在使用一个公式前,一定要仔细审查,确保该公式的适用范围符合当前的解题环境,不能只是因为题目中的参数可以和公式中的参数对应就直接拿来使用。

EOF

2015 年研究生入学考试数学一选择题第 7 题解析

一、题目

若 $A$, $B$ 为任意两个随机事件,则 ( )

( A ) $P(AB)$ $\leqslant$ $P(A)P(B)$.

( B ) $P(AB)$ $\geqslant$ $P(A)P(B)$.

( C ) $P(AB)$ $\leqslant$ $\frac{P(A)+P(B)}{2}$.

( D ) $P(AB)$ $\geqslant$ $\frac{P(A)+P(B)}{2}$.

二、解析

我们知道,$AB$ $\Leftrightarrow$ $A$ $\cap$ $B$.

于是,我们知道,$AB$ $\subset$ $A$, $AB$ $\subset$ $B$.

接下来,根据概率的基本性质中的可比性:

设 $A$, $B$ 是两个事件,若 $A$ $\subset$ $B$, 则有:


$P(A)$ $\leqslant$ $P(B)$;
$P(B-A)$ $=$ $P(B)$ $-$ $P(A)$.

于是,我们知道:

$P(AB)$ $\leqslant$ $P(A)$; ①

$P(AB)$ $\leqslant$ $P(B)$. ②

接下来,将 ① 式与 ② 式联立可得:

$P(AB)$ $+$ $P(AB)$ $\leqslant$ $P(A)$ $+$ $P(B)$ $\Leftrightarrow$ $2$ $\cdot$ $P(AB)$ $\leqslant$ $P(A)$ $+$ $P(B)$ $\Leftrightarrow$ $P(AB)$ $\leqslant$ $\frac{P(A)+P(B)}{2}$.

综上可知,本题的正确选项是:$C$.

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress