应用罗尔定理的特征:闭区间连续、开区间可导、端点值相等

一、题目题目 - 荒原之梦

设 $f(x)$ 在 $[0,1]$ 上连续,在 $(0,1)$ 内可导,且 $f(1)=0$, 请证明 $\exists \xi \in(\mathbf{0}, \mathbf{1})$, 使 $\xi f^{\prime}(\xi)=-f(\xi)$ 成立.

难度评级:

继续阅读“应用罗尔定理的特征:闭区间连续、开区间可导、端点值相等”

凑微分的特征:被积函数中的两部分是导数和原函数的关系

一、前言 前言 - 荒原之梦

在被积函数中,如果我们能找到两部分式子 “$\square$” 和 “$\triangle$” 是导数和原函数的关系,例如:

$$
(\square)^{\prime} = \triangle
$$

则可凑微分为:

$$
\int \square \cdot \triangle \mathrm{~d} x = \int \square \mathrm{~d} (\square)
$$

在本文中,荒原之梦考研数学网将通过几个例题演示上面的凑微分方法。

继续阅读“凑微分的特征:被积函数中的两部分是导数和原函数的关系”

幂函数凑微分的标志:次幂相差 1

一、前言 前言 - 荒原之梦

在本文中,荒原之梦考研数学网将给出几道涉及幂函数凑微分的题目及解析——

对于这类题目,判断能否尝试凑微分的一个关键“标志性信号”就是观察被积函数中是否存在次幂相差 $1$ 的部分。

继续阅读“幂函数凑微分的标志:次幂相差 1”

导数不存在不一定没有切线:导数不能以极限的形式存在,但是切线可以以极限的形式存在

一、题目题目 - 荒原之梦

已知 $f(x)=\left\{\begin{array}{cl}\sqrt{x}, & x \geqslant 0 \\ \sqrt{-x}, & x<0\end{array}\right.$, 则:

(A) $f(x)$ 在 $x=0$ 不连续

(B) $f^{\prime}(0)$ 存在

(C) $f^{\prime}(0)$ 不存在, 曲线 $y=f(x)$ 在 $(0,0)$ 不存在切线

(D) $f^{\prime}(0)$ 不存在, 曲线 $y=f(x)$ 在 $(0,0)$ 有切线

难度评级:

继续阅读“导数不存在不一定没有切线:导数不能以极限的形式存在,但是切线可以以极限的形式存在”

震荡无极限的三角函数 sin 和 cos 具有“自限性”

一、题目题目 - 荒原之梦

难度评级:

继续阅读“震荡无极限的三角函数 sin 和 cos 具有“自限性””

一点处导数是“该点处”的导数,而不是“趋于该点处”的导数

一、题目题目 - 荒原之梦

已知,函数 $f(x)$ 在 $x=x_{0}$ 某邻域有定义,则存在函数 $g(x)$ 在 $x_{0}$ 处连续并使 $f(x) – f\left(x_{0}\right)=\left(x-x_{0}\right) g(x)$ 是 $f(x)$ 在 $x=x_{0}$ 处可导的充要条件吗?

难度评级:

继续阅读“一点处导数是“该点处”的导数,而不是“趋于该点处”的导数”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress