一、题目
已知 $\lim \limits_{x \rightarrow 0} \frac{(x+1)(2 x+1)(3 x+1)(4 x+1)(5 x+1)+a x+b}{x+x^{2}}$ $=$ $16$, 则 $a = ?$, $b = ?$
难度评级:
继续阅读“在无穷小的环境中,只有次幂最低的起作用”已知 $\lim \limits_{x \rightarrow 0} \frac{(x+1)(2 x+1)(3 x+1)(4 x+1)(5 x+1)+a x+b}{x+x^{2}}$ $=$ $16$, 则 $a = ?$, $b = ?$
难度评级:
继续阅读“在无穷小的环境中,只有次幂最低的起作用”设 $f(x)$ 在 $[0,1]$ 上连续,在 $(0,1)$ 内可导,且 $f(1)=0$, 请证明 $\exists \xi \in(\mathbf{0}, \mathbf{1})$, 使 $\xi f^{\prime}(\xi)=-f(\xi)$ 成立.
难度评级:
继续阅读“应用罗尔定理的特征:闭区间连续、开区间可导、端点值相等”$$
I = \lim \limits_{x \rightarrow \infty} \frac{(2 x-3)^{20}(3 x+2)^{30}}{(2 x+1)^{50}+x^{48}(2 x-1)} = ?
$$
难度评级:
继续阅读“通过提取式子中的“大头”,变无穷大为无穷小”在被积函数中,如果我们能找到两部分式子 “$\square$” 和 “$\triangle$” 是导数和原函数的关系,例如:
$$
(\square)^{\prime} = \triangle
$$
则可凑微分为:
$$
\int \square \cdot \triangle \mathrm{~d} x = \int \square \mathrm{~d} (\square)
$$
在本文中,荒原之梦考研数学网将通过几个例题演示上面的凑微分方法。
继续阅读“凑微分的特征:被积函数中的两部分是导数和原函数的关系”在本文中,荒原之梦考研数学网将给出几道涉及幂函数凑微分的题目及解析——
对于这类题目,判断能否尝试凑微分的一个关键“标志性信号”就是观察被积函数中是否存在次幂相差 $1$ 的部分。
继续阅读“幂函数凑微分的标志:次幂相差 1”$$
I=\lim \limits_{x \rightarrow \infty} \frac{(x+a)^{x+a}(x+b)^{x+b}}{(x+a+b)^{2 x+a+b}} = ?
$$
难度评级:
继续阅读“次幂同时含有变量和常量的极限怎么计算?”$$
I = \lim \limits_{n \rightarrow \infty} \frac{5^{n}+2^{n}}{5^{n+1}+2^{n+1}} = ?
$$
难度评级:
继续阅读“关于幂指函数的无穷大比较的一个重要结论”$$
\lim \limits_{x \rightarrow 1} \left( \frac{x}{x-1} \ – \ \frac{1}{\ln x} \right) = ?
$$
难度评级:
继续阅读“等价无穷小公式的一种“深度用法””$$
\lim_{n \rightarrow \infty} \frac{n^{n}}{(n + 1)^{n}} = ?
$$
难度评级:
继续阅读“求极限“取大头丢小头”需要注意:有些“小头”不一定真的小”设曲线 $y=f(x)$ 在点 $(0,0)$ 处的曲率圆为 $x^{2}+(y-1)^{2}=1$, 则当 $x \rightarrow 0$ 时, $f(x)$ 为 $x^{2}$ 的 ( )
(A) 高阶无穷小
(C) 等价无穷小
(B) 低阶无穷小
(D) 同阶但不等价无穷小
难度评级:
继续阅读“由曲率圆逆推曲率”已知,曲线 $y = f(x)$ 满足 $\int_{0}^{x} t f(t) \mathrm{~d} t = x^{2} + f(x)$, 求 $f(x)$ 的表达式。
难度评级:
继续阅读“这个题目隐含的约束条件你能找到吗?”已知 $f(x)=\left\{\begin{array}{cl}\sqrt{x}, & x \geqslant 0 \\ \sqrt{-x}, & x<0\end{array}\right.$, 则:
(A) $f(x)$ 在 $x=0$ 不连续
(B) $f^{\prime}(0)$ 存在
(C) $f^{\prime}(0)$ 不存在, 曲线 $y=f(x)$ 在 $(0,0)$ 不存在切线
(D) $f^{\prime}(0)$ 不存在, 曲线 $y=f(x)$ 在 $(0,0)$ 有切线
难度评级:
继续阅读“导数不存在不一定没有切线:导数不能以极限的形式存在,但是切线可以以极限的形式存在”已知 $f(x)=\left\{\begin{array}{cc}|x|^{a} \sin \frac{1}{x}, & x \neq 0, \\ 0, & x=0,\end{array}\right.$ 若:
(I) $f(x)$ 为连续函数;
(II) $f(x)$ 为可导函数;
(III) $f(x)$ 为连续可导函数,
则参数 $a$ 必须分别满足:
(A) ( I ) $a>0$; ( II ) $a>1$; ( III ) $a>2$
(B) ( I ) $a>1$; ( II ) $a>2$; ( III) $a>3$
(C) ( I ) $a>0$; ( II ) $a \geqslant 1$; ( III ) $a \geqslant 2$
(D) ( I ) $a>0$; ( II ) $a \geqslant 2$; ( III ) $a \geqslant 3$
难度评级:
继续阅读“震荡无极限的三角函数 sin 和 cos 具有“自限性””已知,函数 $f(x)$ 在 $x=x_{0}$ 某邻域有定义,则存在函数 $g(x)$ 在 $x_{0}$ 处连续并使 $f(x) – f\left(x_{0}\right)=\left(x-x_{0}\right) g(x)$ 是 $f(x)$ 在 $x=x_{0}$ 处可导的充要条件吗?
难度评级:
继续阅读“一点处导数是“该点处”的导数,而不是“趋于该点处”的导数”