利用平方差公式和立方差公式求解分式的极限

平方差公式

已知,平方差公式为:

$$
\left( a+b \right) \times \left( a-b \right) = a^{2} – b^{2}
$$

所以:

$$
\left( 1 – \sqrt{x} \right) \left( 1 + \sqrt{x} \right) = 1-x
$$

于是:

$$
\lim_{x \rightarrow 1} \frac{1 – x}{2 \left( 1 – \sqrt{x} \right)} = \lim_{x \rightarrow 1} \frac{\left( 1 – x \right) \left( 1 + \sqrt{x} \right)}{2 \left( 1 – x \right)} = 1
$$

难度评级:

立方差公式

已知,立方差公式为:

$$
a^{3} – b^{3} = \left( a-b \right) \times \left( a^{2} + b^{2} +ab \right)
$$

所以:

$$
\left( 1 – \sqrt[3]{x} \right) \left( \sqrt[3]{x^{2}} + \sqrt[3]{x} + 1 \right) = 1 – x
$$

于是:

$$
\lim_{x \rightarrow 1} \frac{1 – x}{1 – \sqrt[3]{x}} = \lim_{x \rightarrow 1} \frac{\left( 1 – x \right) \left( \sqrt[3]{x^{2}} + \sqrt[3]{x} + 1 \right)}{1 – x} = 3
$$

难度评级:

$n$ 方差($n$ 次幂差)公式

事实上,当 $n$ 为正整数的时候,对于式子 $a^{n} – b^{n}$, 我们有下面的通用计算公式:

$$
\begin{aligned}
a^{n} – b^{n} & = \left( a – b \right) \sum_{k=0}^{n-1} a^{n-1-k} b^{k} \\ \\
& = \left( a – b \right) \left( a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \cdots + ab^{n-2} + b^{n-1} \right)
\end{aligned}
$$

于是——

  1. 当 $n=2$ 时,有:

$$
a^{2} – b^{2} = \left( a – b \right) \left( a + b \right)
$$

  1. 当 $n=3$ 时,有:

$$
a^{3} – b^{3} = \left( a – b \right) \left( a^{2} + ab + b^{2} \right)
$$

  1. 当 $n=4$ 时,有:

$$
a^{4} – b^{4} = \left( a – b \right) \left( a^{3} + a^{2}b + ab^{2} + b^{3} \right)
$$

需要注意的是,由于:

$$
a^{3} – b^{3} = \left( a – b \right) \left( a^{2} + ab + b^{2} \right) \textcolor{orangered}{ \neq \left( a – b \right) \left( a^{2} + 2ab + b^{2} \right) }
$$

即:

$$
a^{3} – b^{3} = \left( a – b \right) \left( a^{2} + ab + b^{2} \right) \textcolor{orangered}{ \neq \left( a – b \right) \left( a+b \right)^{3-1} }
$$

因此:

$$
\textcolor{orangered}{
a^{n} – b^{n} \neq \left( a-b \right) \left( a+b \right)^{n-1}
}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

有关三角函数 sin, cos 和 tan 的积分的两个结题思路:化二为一、化一为二

前言

下面这个式子连接了三角函数 $\sin$, $\cos$ 和 $\tan$, 即:

$$
\tan x = \frac{\sin x}{\cos x}
$$

因此,在遇到有关三角函数 $\tan$ 的积分时,我们可以尝试将其化作由三角函数 $\sin$ 和 $\cos$ 组成的等价表达式;类似地,在遇到有关三角函数 $\sin$ 和 $\cos$ 的积分时,我们可以尝试将其化作由三角函数 $\tan$ 组成的等价表达式.

继续阅读“有关三角函数 sin, cos 和 tan 的积分的两个结题思路:化二为一、化一为二”

在这两道题中,你能快速区分是对指数函数求导,还是对幂函数求导吗?

题目一

解析一

对自变量 $\textcolor{lightgreen}{x}$ 求偏导时,需要将自变量 $y$ 看作常数,此时 $\textcolor{lightgreen}{x}^{y}$ 就是关于 $\textcolor{lightgreen}{x}$ 的幂函数,于是:

$$
\frac{\partial f}{\partial x} = y \textcolor{lightgreen}{x}^{y-1}
$$

对自变量 $\textcolor{orange}{y}$ 求偏导时,需要将自变量 $x$ 看作常数,此时 $x^{\textcolor{orange}{y}}$ 就是关于 $\textcolor{orange}{y}$ 的指数函数,于是:

$$
\frac{\partial f}{\partial y} = x^{\textcolor{orange}{y}} \ln x
$$

题目二

解析二

对自变量 $\textcolor{lightgreen}{x}$ 求偏导时,需要将自变量 $y$ 看作常数,此时 $y^{\textcolor{lightgreen}{x}}$ 就是关于 $\textcolor{lightgreen}{x}$ 的指数函数,于是:

$$
\frac{\partial f}{\partial x} = y^{\textcolor{lightgreen}{x}} \ln y
$$

对自变量 $\textcolor{orange}{y}$ 求偏导时,需要将自变量 $x$ 看作常数,此时 $\textcolor{orange}{y}^{x}$ 就是关于 $\textcolor{orange}{y}$ 的幂函数,于是:

$$
\frac{\partial f}{\partial y} = x \textcolor{orange}{y}^{x-1}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

有关自然常数 e 极限公式的两个常见变形

已知公式

对于自然常数 $\mathrm{e}$, 我们有:

$$
\lim_{x \rightarrow \infty} \left( 1 + \frac{1}{x} \right)^{x} = \mathrm{e}
$$

变形一

题目

已知 $a$ 为正整数,则:

$$
\lim_{x \rightarrow \infty}\left(1 + \frac{1}{x}\right)^{ax} = ?
$$

解析

$$
\begin{aligned}
\left(1 + \frac{1}{x}\right)^{ax} & = \left[\left(1 + \frac{1}{x}\right)^{x}\right]^{a} \\ \\
& = \mathrm{e}^{a}
\end{aligned}
$$

变形二

已知 $a$ 为正整数,则:

$$
\lim_{x \rightarrow 0}(1 + ax)^{\frac{1}{x}} = ?
$$

解析

首先,令 $y = (ax)^{-1}$, 即:

$$
ax = \frac{1}{y}, \ x = \frac{1}{ay}, \ y \rightarrow \infty
$$

于是:

$$
\begin{aligned}
\lim_{x \rightarrow 0} (1 + ax)^{\frac{1}{x}} & = \lim_{y \rightarrow \infty} \left(1 + \frac{1}{y}\right)^{ay} \\ \\
& = \lim_{y \rightarrow \infty} \left[ \left(1 + \frac{1}{y}\right)^{y} \right]^{a} \\ \\
& = \mathrm{e}^{a}
\end{aligned}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

平方与求导或许可以将被积函数中次幂不同的部分凑成相同的次幂

一、前言

我们知道,在对一个式子进行积分的时候,如果式子中自变量的次幂都是相同的,就会比较方便进行运算.

我们还知道,平方运算可以让一个式子的次幂增加(反过来看就是减少),例如 $\left( x^{\textcolor{#00bffe}{3}} \right)^{2}$ $=$ $x^{\textcolor{#00bffe}{6}}$; 而每次求导运算可以将一个式子的次幂减少 $1$ 次,例如 $\mathrm{d} \left( x^{\textcolor{yellow}{3}} \right)$ $=$ $\frac{1}{3} x^{\textcolor{yellow}{2}} \mathrm{~d} x$.

所以,对于被积函数中次幂不同部分,可以尝试通过平方运算与求导运算结合使用的方式,凑成相同的次幂.

继续阅读“平方与求导或许可以将被积函数中次幂不同的部分凑成相同的次幂”

取对数的好处:将底数上的变量移动到指数上

一、前言

有些时候,当式子的底数和指数都含有变量的时候,就会难以直接进行求导运算. 此时,我们就可以先对原式取对数. 在本文中,「荒原之梦考研数学」将通过例题为同学们讲解对数的这一使用方式.

继续阅读“取对数的好处:将底数上的变量移动到指数上”

由两道题得出的有关自然对数 $\ln$ 的两个二级结论

一、前言

在本文中,「荒原之梦考研数学」将通过两道题目,总结出以下两个有关自然对数 $\ln$ 的二级结论:

$$
\begin{aligned}
& \lim_{x \rightarrow 0^{+}} x \ln x = 0; \\ \\
& \lim_{x \rightarrow 0^{+}} x^{a} \ln x = 0, \quad (a > 0).
\end{aligned}
$$

继续阅读“由两道题得出的有关自然对数 $\ln$ 的两个二级结论”

求一个变量的偏导数的时候,其他所有“同级变量”都可以看作常数

一、题目

已知,函数 $u$ $=$ $(x^{2} + y^{2})z^{2} + \sin x^{2}$,求 $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ 及 $\frac{\partial u}{\partial z}$.

继续阅读“求一个变量的偏导数的时候,其他所有“同级变量”都可以看作常数”

次幂形式的极限未定式,一般都可以先尝试取对数

一、前言

在计算式子极限的时候,对于形如 $\infty^{0}$, $1^{\infty}$ 和 $0^{0}$ 这样的式子,我们一般都可以先尝试对其取自然对数 $\ln$, 因为这样可以将形如 $\infty^{0}$, $1^{\infty}$ 和 $0^{0}$ 极限,转换为形如 $\frac{\infty}{\infty}$ 或者 $\frac{0}{0}$ 的极限,从而就可以使用洛必达法则,或者其他求解极限的方式完成接下来的求解过程.

继续阅读“次幂形式的极限未定式,一般都可以先尝试取对数”

求解多元函数中某个变量的偏导数时,最好先将其他变量的已知值代入原式

一、前言

在对多元函数求偏导数的时候,一般情况下,我们可以将除了被求偏导数的变量之外的其他变量的值先代入原式中(如果这些变量有具体的数值或者关系式的话),这在通常情况下都可以降低我们求偏导的运算量.

在本文中,我们就通过两道例题,来看一看提前代入与求偏导无关的变量与否对计算难易程度的影响.

继续阅读“求解多元函数中某个变量的偏导数时,最好先将其他变量的已知值代入原式”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2026 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2026   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress