一、题目
以下极限等式(若某端极限存在,则另一端极限也存在且相等)成立的是:
(A) 设 $\lim \limits_{x \rightarrow a} h(x)=A$, 则 $\lim \limits_{x \rightarrow a} \frac{f_{1}(x)+f_{2}(x)}{h(x)+g(x)}=\lim \limits_{x \rightarrow a} \frac{f_{1}(x)+f_{2}(x)}{A+g(x)}$
(B) 设 $\lim \limits_{x \rightarrow a} h(x)=0$, 则 $\lim \limits_{x \rightarrow a} \left(h(x) \cdot \frac{f(x)}{g(x)}\right)=0$
(C) 设 $\lim \limits_{x \rightarrow a} h(x)=A \neq 0$, 则 $\lim \limits_{x \rightarrow a} \frac{f_{1}(x)+f_{2}(x)}{h(x) g(x)}=\frac{1}{A} \lim \limits_{x \rightarrow a} \frac{f_{1}(x)+f_{2}(x)}{g(x)}$
(D) $\lim \limits_{x \rightarrow 0}\left(\frac{\sin x}{x^{2}}+\frac{f(x)}{x}\right)=\lim \limits_{x \rightarrow 0} \frac{\sin x}{x^{2}}+\lim \limits_{x \rightarrow 0} \frac{f(x)}{x}$
难度评级:
继续阅读“乘法中的极限可以代入,加法中的极限不能代入”