从分式中拆分出常数的三个快速公式

一、前言

在本文中,「荒原之梦考研数学」将通过公式的推导,帮助同学们在遇到下面这样的式子时可以从中快速拆分出常数,从而方便进行积分、求导等运算:

$$
\frac{a x^{2} + b}{1+x^{2}} \quad \quad \frac{a x^{2} + b}{1 + cx^{2}} \quad \quad \frac{a x^{2} + b}{d + cx^{2}}
$$

我们的目标是,对上面的式子,建立下面的等式:

$$
\begin{align}
\frac{a x^{2} + b}{1+x^{2}} & = A – \frac{B}{1 + x^{2}} \tag{1} \\ \notag \\
\frac{a x^{2} + b}{1 + cx^{2}} & = A – \frac{B}{1 + c x^{2}} \tag{2} \\ \notag \\
\frac{a x^{2} + b}{d + cx^{2}} & = A – \frac{B}{d + c x^{2}} \tag{3}
\end{align}
$$

其中,$a$, $b$, $c$ 和 $d$ 是已知的常数,$A$ 和 $B$ 是未知常数.

继续阅读“从分式中拆分出常数的三个快速公式”

在这两道题中,你能快速区分是对指数函数求导,还是对幂函数求导吗?

题目一

解析一

对自变量 $\textcolor{lightgreen}{x}$ 求偏导时,需要将自变量 $y$ 看作常数,此时 $\textcolor{lightgreen}{x}^{y}$ 就是关于 $\textcolor{lightgreen}{x}$ 的幂函数,于是:

$$
\frac{\partial f}{\partial x} = y \textcolor{lightgreen}{x}^{y-1}
$$

对自变量 $\textcolor{orange}{y}$ 求偏导时,需要将自变量 $x$ 看作常数,此时 $x^{\textcolor{orange}{y}}$ 就是关于 $\textcolor{orange}{y}$ 的指数函数,于是:

$$
\frac{\partial f}{\partial y} = x^{\textcolor{orange}{y}} \ln x
$$

题目二

解析二

对自变量 $\textcolor{lightgreen}{x}$ 求偏导时,需要将自变量 $y$ 看作常数,此时 $y^{\textcolor{lightgreen}{x}}$ 就是关于 $\textcolor{lightgreen}{x}$ 的指数函数,于是:

$$
\frac{\partial f}{\partial x} = y^{\textcolor{lightgreen}{x}} \ln y
$$

对自变量 $\textcolor{orange}{y}$ 求偏导时,需要将自变量 $x$ 看作常数,此时 $\textcolor{orange}{y}^{x}$ 就是关于 $\textcolor{orange}{y}$ 的幂函数,于是:

$$
\frac{\partial f}{\partial y} = x \textcolor{orange}{y}^{x-1}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

峰图 | 基于对函数微观结构的定义研究函数的光滑属性

一、前言

在本文中,「荒原之梦考研数学」将基于《判断一个点是不是尖点的“峰”式图形化方法:落圆法》和《为什么“尖点”一定是不可导点?因为尖点不是“双胞胎点”》这两篇文章中原创的新视角和思路,进一步做方法上的完善,通过对函数微观结构的创造性定义,在微观视角上实现对函数光滑属性的描述和解释. 由于对函数光滑属性的研究,实际上就是对函数的导函数进行研究,所以,本文所提供的方法可用于以更加直观的方式解释函数的可导性,以及对导函数性质的描述.

继续阅读“峰图 | 基于对函数微观结构的定义研究函数的光滑属性”

函数表达式就是函数本身吗?

一、前言

函数可以表示成函数表达式,也可以表示成函数图象,甚至也可以用一系列的坐标点表示(几乎所有的计算机绘图使用的都是这种方式)——

我们知道,函数图象和函数的点阵坐标都只是对函数的近似表示,严格地说,无论函数图象,还是函数的点阵坐标,都不是函数本身.

那么,函数的表达式和函数是完全等价的关系吗?

继续阅读“函数表达式就是函数本身吗?”

公式类推的过程中一定要注意约束条件是否唯一

一、前言

对公式做类推,通常可以让我们借助一个较简单的公式,直接得到一个较复杂的公式,并且不需要经过太多的推理过程.

在对公式做类推的时候,往往只能考虑一个变量,如果考虑两个及以上的变量,则会让整个类推的过程变得很复杂. 所以,在对公式做类推的时候,一定要注意识别类推得出的式子与之前的式子相比,是不是只有一个变量发生变化.

在本文中,「荒原之梦考研数学」将通过 $\ln x$ 和 $\ln (1-x)$ 的多阶导表达式的类推,来阐述上面的问题.

继续阅读“公式类推的过程中一定要注意约束条件是否唯一”

你擅长做矩阵乘法,还是矩阵加减法?

一、题目

已知矩阵 $\boldsymbol{A}$ $=$ $\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{bmatrix}$, 单位矩阵 $\boldsymbol{E}$ $=$ $\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$, 则:

$$
\begin{vmatrix} \boldsymbol{E} – \boldsymbol{A}^{2} \end{vmatrix} = ?
$$

继续阅读“你擅长做矩阵乘法,还是矩阵加减法?”

2019年考研数二第23题解析:相似矩阵、相似对角化

一、题目

继续阅读“2019年考研数二第23题解析:相似矩阵、相似对角化”

矩阵 A 相似对角化中的可逆矩阵 P 为什么是由矩阵 A 的特征向量组成的?

一、前言

在《求解矩阵相似对角化中可逆矩阵 P 的步骤》这篇文章中,我们知道了求解矩阵相似对角化 $\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}$ $=$ $\boldsymbol{\Lambda}$ 中可逆矩阵 $\boldsymbol{P}$ 的步骤.

在本文中,「荒原之梦考研数学」就通过对这一步骤必要性和充分性的分析,来说明为什么矩阵 $\boldsymbol{A}$ 相似对角化中的可逆矩阵 $\boldsymbol{P}$ 是由矩阵 $\boldsymbol{A}$ 的特征向量组成的.

继续阅读“矩阵 A 相似对角化中的可逆矩阵 P 为什么是由矩阵 A 的特征向量组成的?”

求解矩阵相似对角化中可逆矩阵 P 的步骤

一、前言

在本文中,「荒原之梦考研数学」将从矩阵的特征值、特征向量与相似对角化的定义出发,为同学们讲解清楚求解矩阵相似对角化中可逆矩阵 $\boldsymbol{P}$ 的步骤.

继续阅读“求解矩阵相似对角化中可逆矩阵 P 的步骤”

峰图 | 解这道题不需要记住公式,只需要撕下两个“纸条”

一、题目

继续阅读“峰图 | 解这道题不需要记住公式,只需要撕下两个“纸条””

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress