行列式的按列展开定理(C003)

问题

已知,行列式中 $a_{i j}$ 表示第 $i$ 行第 $j$ 列的元素,$A_{i j}$ 表示该元素的代数余子式,$M_{i j}$ 表示该元素的余子式。

则,如果要以按列展开的方式计算一个行列式的数值 $D$,以下哪个选项是正确的?

选项

[A].   $D$ $=$ $\frac{a_{1 j}}{A_{1 j}}$ $+$ $\frac{a_{2 j}}{A_{2 j}}$ $+$ $\cdots$ $+$ $\frac{a_{n j}}{A_{n j}}$

[B].   $D$ $=$ $a_{1 j}$ $A_{1 j}$ $\times$ $a_{2 j}$ $A_{2 j}$ $\times$ $\cdots$ $\times$ $a_{n j}$ $A_{n j}$

[C].   $D$ $=$ $a_{1 j}$ $M_{1 j}$ $+$ $a_{2 j}$ $M_{2 j}$ $+$ $\cdots$ $+$ $a_{n j}$ $M_{n j}$

[D].   $D$ $=$ $a_{1 j}$ $A_{1 j}$ $+$ $a_{2 j}$ $A_{2 j}$ $+$ $\cdots$ $+$ $a_{n j}$ $A_{n j}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

行列式等于它的某一行 (列) 元素与其对应的代数余子式乘积之和。若按第 $j$ 列展开,则有:

$D$ $=$ $a_{1 j}$ $A_{1 j}$ $+$ $a_{2 j}$ $A_{2 j}$ $+$ $\cdots$ $+$ $a_{n j}$ $A_{n j}$.

其中,$i$ $=$ $1$, $2$, $\cdots$, $n$.

行列式的按行展开定理(C003)

问题

已知,行列式中 $a_{i j}$ 表示第 $i$ 行第 $j$ 列的元素,$A_{i j}$ 表示该元素的代数余子式,$M_{i j}$ 表示该元素的余子式。

则,如果要以按行展开的方式计算一个行列式的数值 $D$,以下哪个选项是正确的?

选项

[A].   $D$ $=$ $a_{i 1}$ $A_{i 1}$ $+$ $a_{i 2}$ $A_{i 2}$ $+$ $\cdots$ $+$ $a_{i n}$ $A_{i n}$

[B].   $D$ $=$ $\frac{a_{i 1}}{A_{i 1}}$ $+$ $\frac{a_{i 2}}{A_{i 2}}$ $+$ $\cdots$ $+$ $\frac{a_{i n}}{A_{i n}}$

[C].   $D$ $=$ $a_{i 1}$ $A_{i 1}$ $\times$ $a_{i 2}$ $A_{i 2}$ $\times$ $\cdots$ $\times$ $a_{i n}$ $A_{i n}$

[D].   $D$ $=$ $a_{i 1}$ $M_{i 1}$ $+$ $a_{i 2}$ $M_{i 2}$ $+$ $\cdots$ $+$ $a_{i n}$ $M_{i n}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

行列式等于它的某一行 (列) 元素与其对应的代数余子式乘积之和。若按第 $i$ 行展开,则有:

$D$ $=$ $a_{i 1}$ $A_{i 1}$ $+$ $a_{i 2}$ $A_{i 2}$ $+$ $\cdots$ $+$ $a_{i n}$ $A_{i n}$.

其中,$i$ $=$ $1$, $2$, $\cdots$, $n$.

代数余子式的定义(C002)

问题

已知,$M_{i j}$ 是行列式中元素 $a_{i j}$ 的余子式,则,该元素的代数余子式 $ A_{i j}$ $=$ $?$

选项

[A].   $A_{i j}$ $=$ $(-1)^{i-j}$ $M_{i j}$

[B].   $A_{i j}$ $=$ $(-1)^{i+j}$ $M_{i j}$

[C].   $A_{i j}$ $=$ $(-1)^{i+j+1}$ $M_{i j}$

[D].   $A_{i j}$ $=$ $- M_{i j}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$A_{i j}$ $=$ $(-1)^{i+j}$ $M_{i j}$

余子式的定义(C002)

问题

已知,有如下行列式:
$\begin{vmatrix} a & b & c\\ d & \textcolor{Red}{e} & f\\ g & h & i \end{vmatrix}$.

则,在上述行列式,元素 $e$ 对应的余子式是什么?

选项

[A].   $\begin{bmatrix} a & b\\ g & h \end{bmatrix}$

[B].   $\begin{bmatrix} a & c\\ g & i \end{bmatrix}$

[C].   $\begin{bmatrix} e & f\\ h & i \end{bmatrix}$

[D].   $\begin{bmatrix} b & c\\ h & i \end{bmatrix}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\begin{vmatrix} a & b & c\\ d & \textcolor{Red}{e} & f\\ g & h & i \end{vmatrix}$ 的余子式:

$\begin{bmatrix} a & c\\ g & i \end{bmatrix}$

说明:
在 $n$ 阶行列式中,划去元素 $a_{i j}$ 所在的第 $i$ 行和第 $j$ 列,剩下的元素按照原来的位置组成的 $n$ $-$ $1$ 阶行列式,称为 $a_{i j}$ 的余子式,记作 $M_{i j}$.

把行列式某行或某列的 $k$ 倍加至另一行或列时的性质(C001)

问题

如果,把一个行列式的某行或某列的 $k$ 倍加至该行列式的另一行或另一列,则该行列式会表现出来怎样的性质?

选项

[A].   当 $k$ $>$ $0$ 时行列式变号,当 $k$ $<$ $0$ 时行列式不变号

[B].   当 $k$ $<$ $0$ 时行列式变号,当 $k$ $>$ $0$ 时行列式不变号

[C].   行列式变号

[D].   行列式的值不变


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

行列式的值不变

行列式中某两行或两列元素成比例时的性质(C001)

问题

当行列式中某两行或两列元素成比例时,该行列式会表现出来怎样的性质?

选项

[A].   该行列式不等于 $0$

[B].   该行列式等于 $1$

[C].   该行列式等于 $0$

[D].   该行列式不等于 $1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

该行列式等于 $0$

行列式中某两行或两列元素相同时的性质(C001)

问题

当行列式中某两行或两列元素相同时,该行列式会表现出来怎样的性质?

选项

[A].   该行列式等于 $0$

[B].   该行列式不等于 $1$

[C].   该行列式不等于 $0$

[D].   该行列式等于 $1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

该行列式等于 $0$

行列式中某一行或列元素全为零时的性质(C001)

问题

当行列式中某一行或者某一列的元素全为 $0$ 的时,该行列式会表现出来怎样的性质?

选项

[A].   该行列式不等于 $0$

[B].   该行列式等于 $1$

[C].   该行列式等于 $0$

[D].   该行列式不等于 $1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

该行列式等于 $0$

行列式的可拆分性(C001)

问题

如果,行列式中某一行或者某一列的元素可以写成两数之和的形式,如:

$\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$.

则,根据行列式的性质,可以对上面的行列式做什么样的转换?

选项

[A].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$ $-$ $\left|\begin{array}{lll} b_{11} & a_{12} & a_{13} \\ b_{21} & a_{22} & a_{23} \\ b_{31} & a_{32} & a_{33}\end{array}\right|$

[B].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$ $+$ $\left|\begin{array}{lll} b_{11} & a_{12} & a_{13} \\ b_{21} & a_{22} & a_{23} \\ b_{31} & a_{32} & a_{33}\end{array}\right|$

[C].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} \frac{1}{a_{11}} & a_{12} & a_{13} \\ \frac{1}{a_{21}} & a_{22} & a_{23} \\ \frac{1}{a_{31}} & a_{32} & a_{33} \end{array}\right|$ $+$ $\left|\begin{array}{lll} \frac{1}{b_{11}} & a_{12} & a_{13} \\ \frac{1}{b_{21}} & a_{22} & a_{23} \\ \frac{1}{b_{31}} & a_{32} & a_{33}\end{array}\right|$

[D].   $\left|\begin{array}{lll} a_{11}+b_{11} & a_{12} & a_{13} \\ a_{21}+b_{21} & a_{22} & a_{23} \\ a_{31}+b_{31} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$ $\times$ $\left|\begin{array}{lll} b_{11} & a_{12} & a_{13} \\ b_{21} & a_{22} & a_{23} \\ b_{31} & a_{32} & a_{33}\end{array}\right|$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left|\begin{array}{lll} \textcolor{Red}{a_{11}} \textcolor{yellow}{+} \textcolor{cyan}{b_{11}} & a_{12} & a_{13} \\ \textcolor{Red}{a_{21}} \textcolor{yellow}{+} \textcolor{cyan}{b_{21}} & a_{22} & a_{23} \\ \textcolor{Red}{a_{31}} \textcolor{yellow}{+} \textcolor{cyan}{b_{31}} & a_{32} & a_{33} \end{array}\right|$ $=$ $\left|\begin{array}{lll} \textcolor{Red}{a_{11}} & a_{12} & a_{13} \\ \textcolor{Red}{a_{21}} & a_{22} & a_{23} \\ \textcolor{Red}{a_{31}} & a_{32} & a_{33} \end{array}\right|$ $\textcolor{yellow}{+}$ $\left|\begin{array}{lll} \textcolor{cyan}{b_{11}} & a_{12} & a_{13} \\ \textcolor{cyan}{b_{21}} & a_{22} & a_{23} \\ \textcolor{cyan}{b_{31}} & a_{32} & a_{33}\end{array}\right|$

常数公因子 $k$ 在行列式中的处理方式(C001)

问题

若行列式的某行或列有公因子 $k$, 则以下对该公因子的处理方式中,正确的是哪个?

选项

[A].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $\frac{1}{k}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

[B].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $k$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

[C].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $-k$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$

[D].   $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $k^{n}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ \textcolor{red}{k} a_{i 1} & \textcolor{red}{k} a_{i 2} & \cdots & \textcolor{red}{k} a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|$ $=$ $\textcolor{red}{k}$ $\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right|$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

意见反馈 | 内容纠错 | 微信 | QQ | 公众号 | 知乎 | 微博 | 博客园 |CSDN | B 站 | 电子邮件
豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress