行列式的可拆分性(C001)

问题

如果,行列式中某一行或者某一列的元素可以写成两数之和的形式,如:

|a11+b11a12a13a21+b21a22a23a31+b31a32a33|.

则,根据行列式的性质,可以对上面的行列式做什么样的转换?

选项

[A].   |a11+b11a12a13a21+b21a22a23a31+b31a32a33| = |a11a12a13a21a22a23a31a32a33| + |b11a12a13b21a22a23b31a32a33|

[B].   |a11+b11a12a13a21+b21a22a23a31+b31a32a33| = |1a11a12a131a21a22a231a31a32a33| + |1b11a12a131b21a22a231b31a32a33|

[C].   |a11+b11a12a13a21+b21a22a23a31+b31a32a33| = |a11a12a13a21a22a23a31a32a33| × |b11a12a13b21a22a23b31a32a33|

[D].   |a11+b11a12a13a21+b21a22a23a31+b31a32a33| = |a11a12a13a21a22a23a31a32a33| |b11a12a13b21a22a23b31a32a33|


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

|a11+b11a12a13a21+b21a22a23a31+b31a32a33| = |a11a12a13a21a22a23a31a32a33| + |b11a12a13b21a22a23b31a32a33|


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress