一、前言
通过本文,我们将理解为什么对于 $n$ 阶矩阵 $A$, 如果 $A^{2} = O$, 则下式成立:
$$
r(A) \leqslant \frac{n}{2}
$$
通过本文,我们将理解为什么对于 $n$ 阶矩阵 $A$, 如果 $A^{2} = O$, 则下式成立:
$$
r(A) \leqslant \frac{n}{2}
$$
设 $\boldsymbol{A}$ 为三阶矩阵, $\boldsymbol{P}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$, 若 $\boldsymbol{P}^{\mathrm{\top}} \boldsymbol{A} \boldsymbol{P}^{2}=\left(\begin{array}{ccc}a+2 c & 0 & c \\ 0 & b & 0 \\ 2 c & 0 & c\end{array}\right)$, 则 $\boldsymbol{A}=$
A. $\left(\begin{array}{lll}c & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right)$
B. $\left(\begin{array}{lll}b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & a\end{array}\right)$
C. $\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$
D. $\left(\begin{array}{lll}c & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & a\end{array}\right)$
难度评级:
继续阅读“2024年考研数二第08题解析:逆矩阵的计算”设非负函数 $f(x)$ 在 $[0,+\infty)$ 上连续, 给出以下三个命题:
(1)若 $\int_{0}^{+\infty} f^{2}(x) \mathrm{~d} x$ 收敛, 则 $\int_{0}^{+\infty} f(x) \mathrm{~d} x$ 收敛.
(2)若存在 $p>1$, 使得 $\lim \limits_{x \rightarrow+\infty} x^{p} f(x)$ 存在, 则 $\int_{0}^{+\infty} f(x) \mathrm{~d} x$ 收敛.
(3)若 $\int_{0}^{+\infty} f(x) \mathrm{~d} x$ 收敛, 则存在 $p>1$, 使得 $\lim \limits_{x \rightarrow+\infty} x^{p} f(x)$ 存在.
其中真命题个数为( )
(A) 0
(B) 1
(C) 2
(D) 3
难度评级:
继续阅读“2024年考研数二第07题解析:积分敛散性的判别”已知积分区域 $D$ $=$ $\left\{(x, y) \mid x^{2}+y^{2} \leqslant y\right\}$, 求二重积分 $I$ $=$ $\iint_{D} \sqrt{1-x^{2}-y^{2}} \mathrm{~d} \sigma$.
难度评级:
继续阅读“转为极坐标系后,怎么确定新的积分上下限?”通过本文,荒原之梦考研网将带你一起搞明白如下这类问题:
*如果三阶导数 $f^{\prime \prime \prime}(x)$ 没有零点,那么其原函数 $f(x)$ 最多可能存在多少个零点?
**如果三阶导数 $f^{\prime \prime \prime}(x)$ 有 $1$ 个零点,那么其原函数 $f(x)$ 最多可能存在多少个零点?
继续阅读“通过罗尔定理推导不同阶导数之间零点个数的关系”已知,方程 $y^{\prime \prime}$ $+$ $4 y^{\prime}$ $+$ $4 y$ $=$ $\mathrm{e}^{-2 x}$ 满足条件 $y(0)=0$ 和 $y^{\prime}(0)=1$. 则该方程的特解为( )
难度评级:
继续阅读“特殊条件约束下的一般非齐次二阶线性微分方程特解的求解”版本号:
XD-20250201(2025 考研线性代数二第 01 版)
01. 矩阵的加法运算
02. 矩阵的数乘运算
03. 矩阵的乘法运算
04. 矩阵的转置运算
05. 方阵的幂
设 $f(x, y)$ 是连续函数, 则 $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \mathrm{~d} x \int_{\sin x}^{1} f(x, y) \mathrm{~d} y=(\quad)$
(A) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$
(B) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$
(C) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$
(D) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$
难度评级:
继续阅读“2024年考研数二第06题解析:绘制积分区域,变换积分次序”版本号:
XD-20250201(2025 考研线性代数二第 01 版)
01. 矩阵的表示方法
02. 方阵
03. 行向量
04. 列向量
05. 零矩阵
06. 单位矩阵
07. 数量矩阵
08. 对角矩阵
09. 上三角矩阵
10. 下三角矩阵
11. 对称矩阵
12. 反对称矩阵
已知函数 $f(x, y)$ $=$ $\left\{\begin{array}{l}\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}, & x y \neq 0 \\ 0, & x y=0\end{array}\right.$, 则在点 $(0,0)$ 处
(A) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 可微
(B) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 不可微
(C) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 可微
(D) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 不可微
难度评级:
继续阅读“2024年考研数二第05题解析:二元函数在一点处可微的判定、有界震荡无极限”版本号:
XD-20250201(2025 考研线性代数二第 01 版)
01. 克拉默法则的基础概念
02. 用克拉默法则判断解的特征
03. 克拉默法则与齐次线性方程组
已知数列 $\left\{a_n\right\}\left(a_n \neq 0\right)$, 若 $\left\{a_n\right\}$ 发散, 则 ( )
(A) $\left\{a_n+\frac{1}{a_n}\right\}$ 发散
(B) $\left\{a_n-\frac{1}{a_n}\right\}$ 发散
(C) $\left\{e^{a_n}+\frac{1}{e^{a_n}}\right\}$ 发散
(D) $\left\{e^{a_n}-\frac{1}{e^{a_n}}\right\}$ 发散
难度评级:
继续阅读“2024年考研数二第04题解析:用特例法求解判断数列的敛散性”版本号:
GS-20250201(2025 考研高等数学二第 01 版)
01. 函数的极值
02. 极值存在的必要条件
03. 极值存在的充分条件
04. 极值存在的充要条件
05. 求函数最值得方法
06. 凹凸性得判定
07. 常见得特征点
08. 渐近线
09. 曲率、曲率半径、曲率圆
版本号:
XD-20250201(2025 考研线性代数二第 01 版)
01. 计算抽象型行列式的常用公式
02. 抽象型行列式的补充特例
已知向量 $\alpha_{1} = \left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, $\alpha_{2}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$, $\beta_{1}=\left(\begin{array}{l}2 \\ 5 \\ 9\end{array}\right)$, $\beta_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. 若 $\gamma$ 既可由 $\alpha_{1}$, $\alpha_{2}$ 表示, 也可由
$\beta_{1}$, $\beta_{2}$ 表示, 则 $\gamma$ 为 ($\quad$)
(A) $k\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right), k \in R$
(B) $k\left(\begin{array}{c}3 \\ 5 \\ 10\end{array}\right), k \in R$
(C) $k\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right), k \in R$
(D) $k\left(\begin{array}{l}1 \\ 5 \\ 8\end{array}\right), k \in R$
难度评级:
继续阅读“2023年考研数一第07题解析:一个向量能被其余向量表示就意味着这些向量可以组成一个线性方程组”