一般的一维正态分布到标准正态分布的转换公式与例题详解

一、前言 前言 - 荒原之梦

标准正态分布具有很多独特的性质,因此,一般的普通正态分布到标准正态分布的转换,也是概率统计这门学科经常考察的一个知识点。

在本文中,我们只考虑一维情况下的一般正态分布(普通正态分布)到标准正态分布的转换公式以及例题。

继续阅读“一般的一维正态分布到标准正态分布的转换公式与例题详解”

正态分布概率密度函数图像的特殊点

一、前言 前言 - 荒原之梦

在手绘正态分布的概率密度函数的时候,我们需要知道概率密度函数图象的大致形状和一些特殊点的位置,这也可以帮助我们理解正态分布相关概念以及辅助解题。

所以,在本文中,「荒原之梦考研数学」就给同学们绘制了一个清晰的正态分布概率密度函数图象,并标注出了一些特殊的坐标点。

继续阅读“正态分布概率密度函数图像的特殊点”

什么是点估计?点估计的作用是什么?

一、前言 前言 - 荒原之梦

什么是点估计?点估计的作用是什么?| 荒原之梦考研数学 | 图 01.
图 01. 点估计定义的可视化结构关系图。

在本文中,「荒原之梦考研数学」将通过图示的方式,用直观的表述给同学们讲明白概率论与数理统计中的“点估计”这一概念。

继续阅读“什么是点估计?点估计的作用是什么?”

高斯函数、高斯积分与正态分布之间的关系

一、前言 前言 - 荒原之梦

荒原之梦考研数学 | 高斯函数、高斯积分与正态分布之间的关系 | 图 01.
图 01. 图中描绘了一种二维高斯函数 $g(x,y)$ $=$ $\mathrm{e}^{- (x^{2} + y^{2})}$, 以及其在三维坐标系 $XOZ$ 平面上投影所得的一种一维高斯函数 $g(x)$ $=$ $\mathrm{e}^{-x^{2}}$ 和在三维坐标系 $YOZ$ 平面上投影所得的一种一维高斯函数 $g(y)$ $=$ $\mathrm{e}^{-y^{2}}$.

高斯函数、高斯积分和正态分布之间具有密切的关系,搞明白这些关系,有助于我们对题目和解题方式有更清晰的理解。

在本文中,「荒原之梦考研数学」将为同学们讲明白这些概念之间的关系。

继续阅读“高斯函数、高斯积分与正态分布之间的关系”

概率论中的 $\begin{pmatrix} n \\ k \end{pmatrix}$ 表示什么意思?

一、前言 前言 - 荒原之梦

在一些概率论和数理统计的题目或者学习资料中,我们可能会看到如下这样的写法:

$$
\begin{pmatrix}
n \\
k
\end{pmatrix}
$$

那么,上面这个式子是什么意思呢?在本文中,「荒原之梦考研数学」就给同学们详细解答一下。

继续阅读“概率论中的 $\begin{pmatrix} n \\ k \end{pmatrix}$ 表示什么意思?”

有限总体的大量无放回抽样不是简单随机抽样

一、前言 前言 - 荒原之梦

“抽样”是概率论中的一个关键概念,一般情况下,“抽象”特指“简单随机抽样”。

那么,什么是“简单随机抽样”,什么不是“简单随机抽样”呢?

在本文中,「荒原之梦考研数学」就给同学们讲解清楚这一问题。

继续阅读“有限总体的大量无放回抽样不是简单随机抽样”

切比雪夫不等式的含义及其可视化

一、前言 前言 - 荒原之梦

切比雪夫不等式(又称:切贝雪夫不等式,英文名称:chebyshev’s theorem)在概率论与数理统计中这门课程中是一个非常重要的概念,该不等式在大数定理中也发挥着重要的作用。

在本文中,「荒原之梦考研数学」就通过直观的文字与图形化解释,帮助同学们更好地理解切比雪夫不等式。

继续阅读“切比雪夫不等式的含义及其可视化”

二维连续型随机变量的几何意义是什么?

一、前言 前言 - 荒原之梦

在本文中,「荒原之梦考研数学」将通过对二维连续型随机变量几何意义的解释,让同学们能够建立对二维连续型随机变量更直观的理解。

二维连续型随机变量的几何意义是什么?| 荒原之梦考研数学 | 图 01.
图 01 二维高斯分布的三维示意图.
继续阅读“二维连续型随机变量的几何意义是什么?”

连续型随机变量的分布函数为什么要从 $-\infty$ 大开始积分?

一、前言 前言 - 荒原之梦

我们知道,连续型随机变量 $\xi$ 的分布函数 $F$ 能够表示为非负可积的概率密度函数(分布密度函数)$p$ 在区间 $(- \infty, x)$ 上的积分,即:

$$
F(x) = \int_{\textcolor{springgreen}{\boldsymbol{ – \infty }}}^{x} p(t) \mathrm{~d} t
$$

其中,$- \infty < x < + \infty$.

但是,为什么对 $p(t)$ 的积分要从 $\textcolor{springgreen}{\boldsymbol{ -\infty }}$ 开始呢?

继续阅读“连续型随机变量的分布函数为什么要从 $-\infty$ 大开始积分?”

图解全概率公式

一、前言 前言 - 荒原之梦

全概率公公式的定义如下:

在本文中,「荒原之梦考研数学」就用 的方式,让同学们能够直观地理解全概率公式。

继续阅读“图解全概率公式”

事件的对立操作将使得事件的从属关系发生逆转

一、题目题目 - 荒原之梦

难度评级:

继续阅读“事件的对立操作将使得事件的从属关系发生逆转”

交集和并集相等的两个事件一定是相同的事件

一、题目题目 - 荒原之梦

难度评级:

继续阅读“交集和并集相等的两个事件一定是相同的事件”

用画图的方式求解概率论题目很方便,但难点在于如何画和怎么理解

一、题目题目 - 荒原之梦

难度评级:

继续阅读“用画图的方式求解概率论题目很方便,但难点在于如何画和怎么理解”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress