求解基础解系的方法:每次令一个自由未知数值为 1, 其余自由未知数值为 0, 求解对应的非自由未知数的值(极大线性无关组对应非自由未知数)

一、题目题目 - 荒原之梦

四元齐次线性方程组 $\left\{\begin{array}{l}x_{1}+2 x_{4}=0 \\ x_{3}-3 x_{4}=0\end{array}\right.$ 的基础解系是()

难度评级:

继续阅读“求解基础解系的方法:每次令一个自由未知数值为 1, 其余自由未知数值为 0, 求解对应的非自由未知数的值(极大线性无关组对应非自由未知数)”

极大线性无关组的选取不一定是某个固定的组合:只要线性无关且再加一个向量就线性相关即可

一、题目题目 - 荒原之梦

向量组 $\boldsymbol{\alpha}_{1}=(1,-1,3,0)^{\mathrm{\top}}, \boldsymbol{\alpha}_{2}=(-2,1,-2,1)^{\mathrm{\top}}, \boldsymbol{\alpha}_{3}=(1,1,-5,-2)^{\mathrm{\top}}$ 的极大线性无关组是()

难度评级:

继续阅读“极大线性无关组的选取不一定是某个固定的组合:只要线性无关且再加一个向量就线性相关即可”

不是所有题目都会问我们未知数的值是多少——也有可能会问我们未知数的值不是多少

一、题目题目 - 荒原之梦

已知向量组 $\boldsymbol{\alpha}_{1}=(1,2,3)^{\mathrm{\top}}, \boldsymbol{\alpha}_{2}=(3,-1,2)^{\mathrm{\top}}, \boldsymbol{\alpha}_{3}=(2,3, a)^{\mathrm{\top}}$ 线性无关,则 $a$ _

难度评级:

继续阅读“不是所有题目都会问我们未知数的值是多少——也有可能会问我们未知数的值不是多少”

线性无关的向量经运算之后变相关,则背后隐藏的矩阵一定线性相关

一、题目题目 - 荒原之梦

已知 $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$ 线性无关,若 $\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}, a \boldsymbol{\alpha}_{2}-\boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{1}-\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3}$ 线性相关,则 $a=?$

难度评级:

继续阅读“线性无关的向量经运算之后变相关,则背后隐藏的矩阵一定线性相关”

三个四维列向量线性无关有什么性质?秩小于 3 还是小于 4 ?

一、题目题目 - 荒原之梦

已知向量组 $\boldsymbol{\alpha}_{1}=(1,0,1,2)^{\mathrm{\top}}$, $\boldsymbol{\alpha}_{2}=(1,1,3,1)^{\mathrm{\top}}$, $\boldsymbol{\alpha}_{3}=(2,-1, a, 5)^{\mathrm{\top}}$ 线性相关,则 $a=?$

难度评级:

继续阅读“三个四维列向量线性无关有什么性质?秩小于 3 还是小于 4 ?”

只要存在线性相关的向量,则组成的行列式一定值为零——但一定要记得验证所得未知数的值是否会导致原本线性无关的向量变得线性相关

一、题目题目 - 荒原之梦

已知向量 $\boldsymbol{\beta}=(1, a,-1)^{\mathrm{\top}}$ 可以由 $\boldsymbol{\alpha}_{1}=(a+2,7,1)^{\mathrm{\top}}, \boldsymbol{\alpha}_{2}=(1,-1,2)^{\mathrm{\top}}$ 线性表出,则 $a=?$

难度评级:

继续阅读“只要存在线性相关的向量,则组成的行列式一定值为零——但一定要记得验证所得未知数的值是否会导致原本线性无关的向量变得线性相关”

二元函数的可微性你会证明吗:偏导数都存在也不一定可微哦

题目 02

已知 $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.$ 则 $f(x, y)$ 在点 $(0,0)$ 处可微吗?

解析 02

首先验证偏导数是否存在:

$$
f_{x}^{\prime}(0,0)=\lim \limits_{\substack{\Delta x \rightarrow 0 \\ y=0}} \frac{f(\Delta x, 0)-0}{\Delta x}=\frac{0-0}{(\Delta x)^{2}}=0
$$

$$
f_{y}^{\prime}(0,0)=\lim \limits_{\substack{\Delta y \rightarrow 0 \\ x=0}} \frac{f(0, \Delta y)-0}{\Delta y}=\frac{0-0}{(\Delta y)^{2}} = 0
$$

Tips:

为了简便起见,在求解出 $f_{x}^{\prime}(0,0)$ 可由变量 $x$ 与 $y$ 的对称性直接得出 $f_{y}^{\prime}(0,0) = f_{x}^{\prime}(0,0)$ 的结论。

接着验证是否可微:

$$
\lim \limits_{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}} \frac{f(\Delta x, \Delta y)}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}=
$$

$$
\lim \limits_{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}} \frac{\Delta x \cdot \Delta y}{(\Delta x)^{2}+(\Delta y)^{2}} \Rightarrow
$$

若令 $\Delta y=\Delta x$, 则:

$$
\frac{(\Delta x)^{2}}{2(\Delta x)^{2}}=\frac{1}{2} \neq 0
$$

上面的计算步骤只是一个特例,事实上:

$$
\lim \limits_{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}} \frac{\Delta x \cdot \Delta y}{(\Delta x)^{2}+(\Delta y)^{2}} \Rightarrow
$$

$$
\Delta y = k \Delta x \Rightarrow
$$

$$
\lim \limits_{\substack{\Delta x \rightarrow 0}} \frac{\Delta x \cdot k \Delta x}{(\Delta x)^{2}+(k \Delta x)^{2}} \Rightarrow
$$

$$
\lim \limits_{\substack{\Delta x \rightarrow 0}} \frac{k (\Delta x)^{2}}{(1+k^{2}) (\Delta x)^{2}} = \frac{k}{1 + k^{2}} \ neq 0
$$

综上可知,$f(x, y)$ 在点 $(0,0)$ 处不可微。


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

判断二元函数是否可微的定义公式太长记不住?其实你已经记住了!

一、前言 前言 - 荒原之梦

如果二元函数 $f(x, y)$ 在点 $(x_{0}, y_{0})$ 处的偏导数 $f^{\prime}_{x}(x_{0}, y_{0})$ 以及 $f^{\prime}_{y}(x_{0}, y_{0})$ 都存在,且下面这个式子的极限值为零,则表明该该二元函数在点 $(x_{0}, y_{0})$ 处可微:

$$
\textcolor{orange}{
\lim \limits_{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}} \frac{[f(x_{0} + \Delta x, y_{0} + \Delta y) – f(x_{0}, y_{0})] – [f^{\prime}_{x}(x_{0}, y_{0}) \Delta x + f^{\prime}_{y}(x_{0}, y_{0}) \Delta y]}{\sqrt{(\Delta x)^{2} + (\Delta y)^{2}}}
}
$$

但是,上面这个式子你能记住吗?

其实,你已经记住上面这个式子了,不信就继续看下文吧。

继续阅读“判断二元函数是否可微的定义公式太长记不住?其实你已经记住了!”

什么时候二元函数的极限不存在:沿不同直线或者曲线极限值不相等时

一、题目题目 - 荒原之梦

二元函数 $f(x, y)$ $=$ $\left\{\begin{array}{cl}\frac{x^{2} y}{x^{4}+y^{2}}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0)\end{array}\right.$ 在点 $(0,0)$ 处可微吗?

难度评级:

继续阅读“什么时候二元函数的极限不存在:沿不同直线或者曲线极限值不相等时”

怎么证明二元函数的极限存在:用放缩法

一、题目题目 - 荒原之梦

二元函数 $f(x, y)=\begin{cases}
& \frac{\sin \left(x^{2} y+y^{4}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\
& 0, & (x, y)=(0,0)
\end{cases}$, 在点 $(0,0)$ 处是否连续?$f_{x}^{\prime}(0,0)$ 和 $f_{y}^{\prime}(0,0)$ 是否存在?

难度评级:

继续阅读“怎么证明二元函数的极限存在:用放缩法”

一层一层剥洋葱:从可降阶微分方程到变量可分离的微分方程再到另一个变量可分离的微分方程

一、题目题目 - 荒原之梦

初值问题 $\left\{\begin{array}{l}1+\left(y^{\prime}\right)^{2}=2 y y^{\prime \prime}, \\ y(1)=1, y^{\prime}(1)=-1\end{array}\right.$ 的特解是()

难度评级:

继续阅读“一层一层剥洋葱:从可降阶微分方程到变量可分离的微分方程再到另一个变量可分离的微分方程”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress