一、前言
要讨论收敛是绝对收敛还是条件收敛,我们首先要明确的是:谁收敛?
在考研数学中,可能具有收敛属性的主要概念为:级数、反常积分、数列和函数.
在本文中,我们将围绕这一问题,做一个清晰的分类探讨.
继续阅读“平时所说的收敛是绝对收敛还是条件收敛?”要讨论收敛是绝对收敛还是条件收敛,我们首先要明确的是:谁收敛?
在考研数学中,可能具有收敛属性的主要概念为:级数、反常积分、数列和函数.
在本文中,我们将围绕这一问题,做一个清晰的分类探讨.
继续阅读“平时所说的收敛是绝对收敛还是条件收敛?”设常数 $k > 0$, 则级数 $\sum_{n=1}^{\infty}(-1)^{n}\frac{k+n}{n^{2}} = ?$
(A) 发散.
(B) 绝对收敛.
(C) 条件收敛.
(D) 敛散性与 $k$ 值有关.
在「荒原之梦考研数学」的文章《借助向量工具研究数列加减运算之后的敛散性》中,我们基于向量的视角研究了数列相加或者相减前后所表现出来的敛散性,并总结出了数列相加减的三角形定理和平行四边形定理.
在本文中,「荒原之梦考研数学」将基于上面的研究基础,继续借助向量语言,研究数列隔项合并之后的敛散性.
继续阅读“借助向量工具研究数列隔项合并之后的敛散性”在本文中,「荒原之梦考研数学」将借助“向量”这一工具,研究不同敛散性的两个数列相加或者相减之后所得数列的敛散性. 通过本文中基于向量对这一问题所进行的研究可以非常直观的看到加减运算对数列敛散性所产生的影响,并且可以根据三角形和平行四边形的几何特性对这些结论进行进一步的凝练总结.
继续阅读“借助向量工具研究数列加减运算之后的敛散性”$$
\lim_{x \rightarrow -\infty} \frac{\sqrt{4x^{2} + x – 1} + x + 1}{\sqrt{x^{2} + \sin x}} = ?
$$
已知 $\lim_{x \rightarrow 0} \frac{\sin 6x + x f(x)}{x^{3}} = 0$, 则 $\lim_{x \rightarrow 0} \frac{6 + f(x)}{x^{2}} = ?$
»A« $36$
»B« $16$
»C« $0$
»D« $\infty$
已知 $a_{n} = \left(1 + \frac{1}{n} \right) \sin \frac{n \pi}{2}$, 请证明数列 ${ a_{n} }$ 没有极限(发散).
继续阅读“要使含有三角函数的数列的子列存在极限,则步长需要是三角函数周期的整数倍”已知级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_{n} = 2$, $\sum_{n=1}^{\infty} a_{2n-1} = 5$, 则级数 $\sum_{n=1}^{\infty} a_{n} = ?$
»A« $3$
»B« $7$
»C« $6$
»D« $8$
一阶线性微分方程的求解公式一般都是用不定积分表示的,虽然这样的表达形式在很多情况下都适用,但在某些特殊情况下,我们则需要将公式中的部分不定积分更改为变限积分.
在本文中,「荒原之梦考研数学」将给同学们深入剖析一下将一阶线性微分方程中的部分不定积分写成变限积分的用途和原理,以及注意事项。
继续阅读“在一阶线性微分方程的求解公式中可以使用变限积分”在「荒原之梦」的文章《通过分类讨论分析函数乘积平移的性质》中,我们使用传统数学中符号推理的方式,研究了下面这个问题:
已知,函数 $\mathrm{Z}_{1}(x) = f(x) \cdot g(x)$, 接着,我们将函数 $g(x)$ 向左平移 $k$ 个单位,得到函数 $g(x+k)$, 那么,当函数 $f(x)$ 满足什么条件的时候,函数 $\mathrm{Z}_{2}(x) = f(x) \cdot g(x+k)$ 实际上可以看作是由函数 $\mathrm{Z}_{1}(x)$ 平移得到的呢?并且函数 $\mathrm{Z}_{1}(x)$ 向哪个方向平移了多少个单位得到了函数 $\mathrm{Z}_{2}(x)$ ?
在本文中,「荒原之梦」将对上面的问题进一步深入探讨,并用「荒原之梦」独创的图形推理的方式,研究以下三组函数的平移变换性质:
$$
\begin{aligned}
\mathbf{No.1} & \begin{cases}
\mathrm{Z}_{1}(x) = f(x) \cdot g(x) \\
\mathrm{Z}_{2}(x) = f(x) \cdot g(x + k)
\end{cases} \\ \\
\mathbf{No.2} & \begin{cases}
\mathrm{Z}_{3}(x) = f(x) \cdot g(x) \cdot h(x) \\
\mathrm{Z}_{4}(x) = f(x) \cdot g(x+k) \cdot h(x+l)
\end{cases} \\ \\
\mathbf{No.3} & \begin{cases}
\mathrm{Z}_{5}(x) = f(x) \cdot g(x) \cdot h(x) \\
\mathrm{Z}_{6}(x) = f(x) \cdot g(x+k) \cdot h(x-m)
\end{cases}
\end{aligned}
$$
其中,$k > 0$, $l > 0$, $m > 0$.
在本文中,我们将基于「荒原之梦」定义的“矢量乘法模型”这一工具,通过绘图的方式,直观地说明,当我们把函数 $\mathrm{Z}_{2}(x)$ 看作是由函数 $\mathrm{Z}_{1}(x)$ 沿着坐标系的 $X$ 轴左右平移得到的时候,函数 $f(x)$, $g(x)$ 和 $h(x)$ 需要具有什么样的性质,以及函数 $\mathrm{Z}_{i}(x)$(其中,$i$ $=$ $1,2,3,4,5,6$)左右平移的距离与函数 $g(x)$ 和 $h(x)$ 的左右平移距离之间具有什么样的关系。
继续阅读“基于矢量乘法模型分析函数乘积平移的性质”在「荒原之梦」的《两个函数发生平移变换前后相乘所得函数相等性的分析》这篇文章中,我们分析了当函数 $Z_{1}(x) = f(x) \cdot g(x)$, $Z_{2}(x) = f(x) \cdot g(x – k)$ 时,函数 $f(x)$ 和 $g(x)$ 需要满足什么条件才可以使得 $Z_{1}(x) = Z_{2}(x)$.
在本文中,我们则要回答下面这个问题:
已知,函数 $Z_{1}(x) = f(x) \cdot g(x)$, 接着,我们将函数 $g(x)$ 向左平移 $k$ 个单位,得到函数 $g(x+k)$, 那么,当函数 $f(x)$ 满足什么条件的时候,函数 $Z_{2}(x) = f(x) \cdot g(x+k)$ 实际上可以看作是由函数 $Z_{1}(x)$ 平移得到的呢?并且函数 $Z_{1}(x)$ 向哪个方向平移了多少个单位得到了函数 $Z_{2}(x)$ ?
对于上面的问题,我们不考虑函数定义域的限制.
首先,根据前面的描述,我们知道:
$$
\textcolor{lightgreen}{
\begin{aligned}
& Z_{1}(x) = f(x) \cdot g(x) \\
& Z_{2}(x) = f(x) \cdot g(x+k)
\end{aligned}
} \tag{1}
$$
那么,假设函数 $Z_{2}(x)$ 是由函数 $Z_{1}(x)$ 向左平移 $h$ 个单位得到的(可以通过 $h$ 的正负反映向左或者向右不同的平移方向),则根据问题中的描述,可知:
$$
\textcolor{lightgreen}{
Z_{2}(x) = Z_{1}(x+h) } \tag{2}
$$
于是,结合 $(1)$ 式与 $(2)$ 式,可得:
$$
\textcolor{lightgreen}{
f(x) \cdot g(x+k) = f(x+h) \cdot g(x+h)
} \tag{3}
$$
若要使上面的 $(3)$ 式成立,需要 $f(x)$ 为周期函数,论述如下——
若函数 $f(x)$ 的最小正周期为 $T$, 且 $h = nT$($n$ 为整数),则:
$$
\textcolor{lightgreen}{
f(x+h) = f(x+nT) = f(x)
} \tag{4}
$$
此时,上面的 $(3)$ 式可以写成:
$$
\begin{align}
& f(x) \cdot g(x+k) = f(x) \cdot g(x+h) \notag \\ \notag \\
\leadsto \ & \textcolor{lightgreen}{ g(x+k) = g(x+h) } \tag{5}
\end{align}
$$
若要使得上面的 $(5)$ 式成立,则需要有:
$$
k = h
$$
因此,结论为:当 $f(x)$ 为周期函数时——
若 $k > 0$, 且 $l > 0$, 则函数 $Z_{2}(x)$ 是由函数 $Z_{1}(x)$ 向左平移 $k$ 个单位得到的;类似的,若 $k < 0$, 且 $l < 0$, 则函数 $Z_{2}(x)$ 是由函数 $Z_{1}(x)$ 向右平移 $|k|$ 个单位得到的.
当然,常数函数也是一个特殊的周期函数,所以,当 $f(x)$ 为常数函数的时候,上面的结论也成立.
[1]. 基于矢量乘法模型分析函数乘积平移的性质
[2]. 在一阶线性微分方程的求解公式中可以使用变限积分
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
以独特的视角解析线性代数,让繁复的知识变得直观明了。
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
利用代换 $x = \cos t$ $(0 < t < \pi)$ 将原微分方程 $(1-x^{2})y^{\prime \prime} – xy^{\prime} +y = 0$ 化简,并求出该微分方程满足 $y(0) = 1$, $y^{\prime}(0) = 2$ 的特解.
继续阅读“通过代换简化微分方程:自变量代换”
Tip
拓展 1:《通过代换简化微分方程:函数代换》
zhaokaifeng.com
拓展 2:《一点处函数值的多种表示形式》