题目
编号:A2016221
已知函数 $f(x)$ 在 $[0, \frac{3 \pi}{2}]$ 上连续,在 $(0, \frac{3 \pi}{2})$ 内是函数 $\frac{\cos x}{2x – 3 \pi}$ 的一个原函数,且 $f(0) = 0$.
$(Ⅰ)$ 求 $f(x)$ 在区间 $[0, \frac{3 \pi}{2}]$ 上的平均值;
$(Ⅱ)$ 证明 $f(x)$ 在区间 $(0, \frac{3 \pi}{2})$ 内存在唯一零点.
继续阅读“2016年考研数二第21题解析:积分、变限积分、二重积分、零点”