2023年考研数二第17题解析:等式挖掘、一阶线性微分方程、极值

一、题目题目 - 荒原之梦

设曲线 $\mathrm{L}: \ y=y(x) \ (x>e)$ 经过点 $\left(e^{2}, 0\right), \mathrm{L}$ 上任一点 $P (x, y)$ 到 $Y$ 轴的距离等于该点处的切线在 $Y$ 轴上的截距.

(1) 求 $y(x)$.

(2) 在 $\mathrm{L}$ 上求一点, 使该点的切线与两坐标轴所围三角形面积最小, 并求此最小面积.

难度评级:

继续阅读“2023年考研数二第17题解析:等式挖掘、一阶线性微分方程、极值”

如何求解曲率圆的方程?

一、前言 前言 - 荒原之梦

曲率圆也称为“密切圆”,曲率圆描述了曲线在某一点处的弯曲程度。有关曲率圆的一些基础内容,可以查看荒原之梦考研数学的《什么是曲率?什么是曲率圆?》这篇文章。

在本文中,荒原之梦考研数学将给出计算曲线上某点处曲率圆方程的步骤和公式。

继续阅读“如何求解曲率圆的方程?”

2023年考研数二第08题解析:伴随矩阵的性质在分块矩阵上的推广

一、题目题目 - 荒原之梦

设 $A, B$ 为 $n$ 阶可逆矩阵, $E$ 为 $n$ 阶单位矩阵, $M^{*}$ 为矩阵 $M$ 的伴随矩阵,则 $\left(\begin{array}{ll}A & E \\ O & B\end{array}\right)^{*}=(\quad)$

(A) $\left(\begin{array}{cc}|A| B^{*} & -B^{*} A^{*} \\ 0 & A^{*} B^{*}\end{array}\right)$

(C) $\left(\begin{array}{cc}|B| A^{*} & -B^{*} A^{*} \\ 0 & |A| B^{*}\end{array}\right)$

(B) $\left(\begin{array}{cc}|A| B^{*} & -A^{*} B^{*} \\ 0 & |B| A^{*}\end{array}\right)$

(D) $\left(\begin{array}{cc}|B| A^{*} & -A^{*} B^{*} \\ 0 & |A| B^{*}\end{array}\right)$

难度评级:

继续阅读“2023年考研数二第08题解析:伴随矩阵的性质在分块矩阵上的推广”

2023年考研数二第07题解析:极值点与拐点和一阶导二阶导之间的关系

一、题目题目 - 荒原之梦

设函数 $f(x)=\left(x^{2}+a\right) e^{x}$, 若 $f(x)$ 没有极值点, 但曲线 $y=f(x)$ 有拐点, 则 $a$ 的取值范围是( )

(A) $[0,1)$

(C) $[1,2)$

(B) $[1,+\infty)$

(D) $[2,+\infty)$

难度评级:

继续阅读“2023年考研数二第07题解析:极值点与拐点和一阶导二阶导之间的关系”

2023年考研数二第06题解析:换元积分、指数函数的求导法则

一、题目题目 - 荒原之梦

若函数 $f(\alpha)=\int_{2}^{+\infty} \frac{1}{x(\ln x)^{\alpha+1}} \mathrm{~d} x$ 在 $\alpha=\alpha_{0}$ 处取得最小值, 则 $\alpha_{0}=?$

A. $-\frac{1}{\ln (\ln 2)}$

C. $\frac{1}{\ln 2}$

B. $-\ln (\ln 2)$

D. $\ln 2$

难度评级:

继续阅读“2023年考研数二第06题解析:换元积分、指数函数的求导法则”

2023年考研数二第05题解析:参数方程求导、导数存在性定理

一、题目题目 - 荒原之梦

设函数 $y=f(x)$ 由 $\left\{\begin{array}{l}x=2 t+|t| \\ y=|t| \sin t\end{array}\right.$ 确定, 则 ( )

(A) $f(x)$ 连续, $f^{\prime}(0)$ 不存在

(B) $f^{\prime}(0)$ 不存在, $f(x)$ 在 $x=0$ 处不连续

(C) $f^{\prime}(x)$ 连续, $f^{\prime \prime}(0)$ 不存在

(D) $f^{\prime \prime}(0)$ 存在, $f^{\prime \prime}(x)$ 在 $x=0$ 处不连续

难度评级:

继续阅读“2023年考研数二第05题解析:参数方程求导、导数存在性定理”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress