题目
设 $z=\frac{y}{x}f(xy)$, 其中函数 $f$ 可微,则 $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = ?$
$$
A. 2yf^{‘}(xy)
$$
$$
B. -2yf^{‘}(xy)
$$
$$
C. \frac{2}{x}f(xy)
$$
$$
D. -\frac{2}{x}f(xy)
$$
设 $z=\frac{y}{x}f(xy)$, 其中函数 $f$ 可微,则 $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = ?$
$$
A. 2yf^{‘}(xy)
$$
$$
B. -2yf^{‘}(xy)
$$
$$
C. \frac{2}{x}f(xy)
$$
$$
D. -\frac{2}{x}f(xy)
$$
设函数 $f(x)=\left\{\begin{matrix}
\frac{1}{(x-1)^{a-1}}, 1 < x < e,\\
\frac{1}{x \ln^{a+1} x}, x \geqslant e.
\end{matrix}\right.$ 若反常积分 $\int_{1}^{+\infty} f(x)dx$ 收敛,则 $?$
$$
A. a < -2
$$
$$
B. a > 2
$$
$$
C. -2 < a < 0
$$
$$
D. 0 < a < 2
$$
本题可以参照常见反常积分敛散性的公式计算出来。
常见反常积分敛散性的公式如图 1 所示:

由于分段函数本质上仍然是【一个函数】,因此,如果分段函数对应的反常积分收敛,那么这个分段函数在【反常区间】内每一段函数对应的【积分】都要收敛,即:
$$
\int_{1}^{e} \frac{1}{(x-1)^{a-1}}dx \Rightarrow 收敛;
$$
$$
\int_{e}^{+\infty} \frac{1}{x \ln^{a+1} x} dx \Rightarrow 收敛.
$$
结合前面的公式,于是有:
$$
a-1<1;
$$
$$
a+1>1.
$$
于是:
$$
0<a<2.
$$
综上可知,正确选项为 $D$.
EOF
设函数 $f(x) = \left\{\begin{matrix}
\sin x, 0 \leqslant x < \pi,\\
2, \pi \leqslant x \leqslant 2 \pi,
\end{matrix}\right.$ $F(x) = \int_{0}^{x} f(t)dt$, 则 $?$
$$
A. x = \pi 是函数 F(x) 的跳跃间断点
$$
$$
B. x = \pi 是函数 F(x) 的可去间断点
$$
$$
C. F(x) 在 x = \pi 处连续但不可导
$$
$$
D. F(x) 在 x = \pi 处可导
$$
设函数 $y = f(x)$ 是由方程 $\cos(xy) + \ln y – x = 1$ 确定,则 $\lim_{n \rightarrow \infty} [f(\frac{2}{n}) – 1] = ?$
$$
A. 2
$$
$$
B. 1
$$
$$
C. -1
$$
$$
D. -2
$$
设 $\cos x – 1 = x \sin a(x)$, 其中,$|a(x)| < \frac{\pi}{2}$, 则当 $x \rightarrow 0$ 时,$a(x)$ 是 $?$
$$
A. 比 x 高阶的无穷小
$$
$$
B. 比 x 低阶的无穷小
$$
$$
C. 与 x 同阶但不等价的无穷小
$$
$$
D. 与 x 等价的无穷小
$$
一根长为 $1$ 的细棒位于 $x$ 轴的区间 $[0,1]$ 上,若其线密度 $\rho (x) = – x^{2} + 2x + 1$, 则该细棒的质心坐标 $\bar{x} = ?$
继续阅读“2014年考研数二第13题解析”曲线 $L$ 的极坐标方程是 $r = \theta$, 则 $L$ 在点 $(r, \theta) = (\frac{\pi}{2}, \frac{\pi}{2})$ 处切线的直角坐标系方程为 $?$
继续阅读“2014年考研数二第12题解析”设 $z=f(x,y)$ 是由 $e^{2yz} + x + y^{2} + z = \frac{7}{4}$ 确定的函数,则 $d z |_{(\frac{1}{2}, \frac{1}{2})} = ?$
继续阅读“2014年考研数二第11题解析”设 $f(x)$ 是周期为 $4$ 的可导奇函数,且 $f^{‘}(x) = 2(x-1)$, $x \in [0,2]$, 则 $f(7) = ?$
继续阅读“2014年考研数二第10题解析”设函数 $u(x,y)$ 在有界闭区域 $D$ 上连续,在 $D$ 内二阶连续可导,且满足 $\frac{\partial^{2}u}{\partial x \partial y} \neq 0$, $\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} = 0$, 则 $?$
$$
A. u(x,y) 的最大值和最小值都在 D 的边界上取得
$$
$$
B. u(x,y) 的最大值和最小值都在 D 的内部取得
$$
$$
C. u(x,y) 的最大值在 D 的内部取得,最小值在 D 的边界上取得
$$
$$
D. u(x,y) 的最小值在 D 的内部取得,最大值在 D 的边界上取得
$$
设函数 $f(x)=\arctan x$, 若 $f(x)=xf^{‘}(\xi)$, 则 $\lim_{x \rightarrow 0} \frac{\xi^{2}}{x^{2}} = ?$
$$
A. 1
$$
$$
B. \frac{2}{3}
$$
$$
C. \frac{1}{2}
$$
$$
D. \frac{1}{3}
$$
曲线 $\left\{\begin{matrix}
x = t^{2} + 7,\\
y = t^{2} + 4t + 1
\end{matrix}\right.$ 上对应于 $t=1$ 处的曲率半径为 $?$
$$
A. \frac{\sqrt{10}}{50}
$$
$$
B. \frac{\sqrt{10}}{100}
$$
$$
C. 10 \sqrt{10}
$$
$$
D. 5 \sqrt{10}
$$