$n$ 阶常系数线性齐次微分方程的特征方程的通解:当有 $n$ 个不同的实根时(B030)

问题

若 $n$ 阶常系数线性齐次微分方程的特征方程有 $n$ 个不同的实根 $\lambda_{1}$, $\lambda_{2}$, $\cdots$, $\lambda_{n}$, 则,该微分方程的通解 $y$ $=$ $?$

选项

[A].   $y$ $=$ $C_{1}$ $\mathrm{e}^{\lambda_{1} x}$ $-$ $C_{2}$ $\mathrm{e}^{\lambda_{2} x}$ $-$ $\cdots$ $-$ $C_{n}$ $\mathrm{e}^{\lambda_{n} x}$

[B].   $y$ $=$ $C_{1}$ $\mathrm{e}^{x}$ $+$ $C_{2}$ $\mathrm{e}^{x}$ $+$ $\cdots$ $+$ $C_{n}$ $\mathrm{e}^{x}$

[C].   $y$ $=$ $C_{1}$ $\mathrm{e}^{\lambda_{1} x}$ $+$ $C_{2}$ $\mathrm{e}^{\lambda_{2} x}$ $+$ $\cdots$ $+$ $C_{n}$ $\mathrm{e}^{\lambda_{n} x}$

[D].   $y$ $=$ $C_{1}$ $\mathrm{e}^{\frac{x}{\lambda_{1}}}$ $+$ $C_{2}$ $\mathrm{e}^{\frac{x}{\lambda_{2}}}$ $+$ $\cdots$ $+$ $C_{n}$ $\mathrm{e}^{\frac{x}{\lambda_{n}}}$


显示答案

$y$ $=$ $C_{1}$ $\mathrm{e}^{\lambda_{1} x}$ $+$ $C_{2}$ $\mathrm{e}^{\lambda_{2} x}$ $+$ $\cdots$ $+$ $C_{n}$ $\mathrm{e}^{\lambda_{n} x}$

$n$ 阶常系数线性齐次微分方程的特征方程的一般形式(B030)

问题

已知 $p_{i}$ $($ $i$ $=$ $1$, $2$, $\cdots$, $n$ $)$ 为常数,且,$n$ 阶常系数线性齐次微分方程的一般形式为:
$y^{(n)}$ $+$ $p_{1}$ $y^{(n-1)}$ $+$ $p_{2}$ $y^{(n-2)}$ $+$ $\cdots$ $+$ $p_{n-1}$ $y^{\prime}$ $+$ $p_{n}$ $y$ $=$ $0$.

则,关于该方程对应的特征方程的一般形式,以下选项中正确的是哪个?

选项

[A].   $\lambda^{n}$ $+$ $p_{1}$ $\lambda^{n-1}$ $+$ $p_{2}$ $\lambda^{n-2}$ $+$ $\cdots$ $+$ $p_{n-1}$ $\lambda$ $+$ $p_{n}$ $=$ $1$

[B].   $\lambda^{n}$ $-$ $p_{1}$ $\lambda^{n-1}$ $-$ $p_{2}$ $\lambda^{n-2}$ $-$ $\cdots$ $-$ $p_{n-1}$ $\lambda$ $-$ $p_{n}$ $=$ $0$

[C].   $\lambda^{n}$ $+$ $p_{1}$ $\lambda^{n-1}$ $+$ $p_{2}$ $\lambda^{n-2}$ $+$ $\cdots$ $+$ $p_{n-1}$ $\lambda$ $+$ $p_{n}$ $=$ $0$

[D].   $\lambda^{n}$ $+$ $\lambda^{n-1}$ $+$ $\lambda^{n-2}$ $+$ $\cdots$ $+$ $\lambda$ $=$ $0$


显示答案

$\lambda^{n}$ $+$ $p_{1}$ $\lambda^{n-1}$ $+$ $p_{2}$ $\lambda^{n-2}$ $+$ $\cdots$ $+$ $p_{n-1}$ $\lambda$ $+$ $p_{n}$ $=$ $0$

$n$ 阶常系数线性齐次微分方程的一般形式(B030)

问题

已知 $p_{i}$ $($ $i$ $=$ $1$, $2$, $\cdots$, $n$ $)$ 为常数,则,关于 $n$ 阶常系数线性齐次微分方程的一般形式,以下选项中正确的是哪个?

选项

[A].   $P_{1}$ $y^{(n)}$ $+$ $p_{2}$ $y^{(n-1)}$ $+$ $p_{3}$ $y^{(n-2)}$ $+$ $\cdots$ $+$ $p_{n}$ $y^{\prime}$ $+$ $p_{n+1}$ $y$ $=$ $0$

[B].   $y^{(n)}$ $+$ $p_{1}$ $y^{(n-1)}$ $+$ $p_{2}$ $y^{(n-2)}$ $+$ $\cdots$ $+$ $p_{n-1}$ $y^{\prime}$ $+$ $p_{n}$ $y$ $=$ $1$

[C].   $y^{(n)}$ $+$ $p_{1}$ $y^{(n-1)}$ $+$ $p_{2}$ $y^{(n-2)}$ $+$ $\cdots$ $+$ $p_{n-1}$ $y^{\prime}$ $+$ $p_{n}$ $y$ $=$ $0$

[D].   $y^{(n+1)}$ $+$ $p_{1}$ $y^{(n)}$ $+$ $p_{2}$ $y^{(n-1)}$ $+$ $\cdots$ $+$ $p_{n-2}$ $y^{\prime}$ $+$ $p_{n-1}$ $y$ $=$ $0$


显示答案

$y^{(n)}$ $+$ $p_{1}$ $y^{(n-1)}$ $+$ $p_{2}$ $y^{(n-2)}$ $+$ $\cdots$ $+$ $p_{n-1}$ $y^{\prime}$ $+$ $p_{n}$ $y$ $=$ $0$

二阶欧拉方程的构型(B029)

问题

已知 $a$ 和 $b$ 为常数,则以下方程中,哪个是二阶欧拉方程?

选项

[A].   $x^{3}$ $y^{\prime \prime \prime}$ $+$ $a$ $x^{2}$ $y^{\prime \prime}$ $+$ $b$ $y$ $=$ $f(x)$

[B].   $x^{2}$ $y^{\prime \prime}$ $+$ $a$ $x$ $y^{\prime}$ $+$ $b$ $y$ $=$ $f(x)$

[C].   $x^{2}$ $y^{\prime \prime}$ $+$ $a$ $x$ $y^{\prime \prime}$ $+$ $b$ $y^{\prime \prime}$ $=$ $f(x)$

[D].   $a$ $x$ $y^{\prime \prime}$ $+$ $x$ $y^{\prime}$ $+$ $b$ $y$ $=$ $f(x)$


显示答案

$x^{2}$ $y^{\prime \prime}$ $+$ $a$ $x$ $y^{\prime}$ $+$ $b$ $y$ $=$ $f(x)$

二阶常系数线性非齐次方程的特解:当 $\alpha$ $\pm$ $i$ $\beta$ 是特征根时(B029)

问题

已知,有二阶常系数线性非齐次方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q$ $y$ $=$ $f(x)$.
其中 $p$, $q$ 均为常数.

则,当 $f(x)$ $=$ $P_{n}(x)$ $\mathrm{e}^{\alpha x}$ $\sin \beta x$ 或 $f(x)$ $=$ $P_{n}(x)$ $\mathrm{e}^{\alpha x}$ $\cos \beta x$ 且 $a$ 不是特征根时,该非齐次方程的特解 $y^{*}(x)$ $=$ $?$

选项

[A].   $y^{*}(x)$ $=$ $x^{2}$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $+$ $W_{n}(x)$ $\sin \beta x$ $\big]$

[B].   $y^{*}(x)$ $=$ $x$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $+$ $W_{n}(x)$ $\sin \beta x$ $\big]$

[C].   $y^{*}(x)$ $=$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $+$ $W_{n}(x)$ $\sin \beta x$ $\big]$

[D].   $y^{*}(x)$ $=$ $x^{k}$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $-$ $W_{n}(x)$ $\sin \beta x$ $\big]$


显示答案

$y^{*}(x)$ $=$ $x^{k}$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $+$ $W_{n}(x)$ $\sin \beta x$ $\big]$

当 $\alpha$ $\pm$ $i$ $\beta$ 是特征根,$k$ $=$ $1$.

其中 $P_{n}(x)$ 为 $x$ 的 $n$ 次多项式的一般形式,$Q_{n}(x)$, $W_{n}(x)$ 为 $n$ 次多项式的一般形式.

二阶常系数线性非齐次方程的特解:当 $\alpha$ $\pm$ $i$ $\beta$ 不是特征根时(B029)

问题

已知,有二阶常系数线性非齐次方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q$ $y$ $=$ $f(x)$.
其中 $p$, $q$ 均为常数.

则,当 $f(x)$ $=$ $P_{n}(x)$ $\mathrm{e}^{\alpha x}$ $\sin \beta x$ 或 $f(x)$ $=$ $P_{n}(x)$ $\mathrm{e}^{\alpha x}$ $\cos \beta x$ 且 当 $\alpha$ $\pm$ $i$ $\beta$ 不是特征根时,该非齐次方程的特解 $y^{*}(x)$ $=$ $?$

选项

[A].   $y^{*}(x)$ $=$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $-$ $W_{n}(x)$ $\sin \beta x$ $\big]$

[B].   $y^{*}(x)$ $=$ $x^{2}$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $+$ $W_{n}(x)$ $\sin \beta x$ $\big]$

[C].   $y^{*}(x)$ $=$ $x$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $+$ $W_{n}(x)$ $\sin \beta x$ $\big]$

[D].   $y^{*}(x)$ $=$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $+$ $W_{n}(x)$ $\sin \beta x$ $\big]$


显示答案

$y^{*}(x)$ $=$ $x^{k}$ $\mathrm{e}^{\alpha x}$ $\big[$ $Q_{n}(x)$ $\cos \beta x$ $+$ $W_{n}(x)$ $\sin \beta x$ $\big]$

当 $\alpha$ $\pm$ $i$ $\beta$ 不是特征根,$k$ $=$ $0$.

其中 $P_{n}(x)$ 为 $x$ 的 $n$ 次多项式的一般形式,$Q_{n}(x)$, $W_{n}(x)$ 为 $n$ 次多项式的一般形式.

二阶常系数线性非齐次方程的特解:当 $a$ 是特征方程的重根时(B029)

问题

已知,有二阶常系数线性非齐次方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q$ $y$ $=$ $f(x)$.
其中 $p$, $q$ 均为常数.

则,当 $f(x)$ $=$ $P_{n}(x)$ $\mathrm{e}^{a x}$ 且 $a$ 是特征方程的重根时,该非齐次方程的特解 $y^{*}(x)$ $=$ $?$

选项

[A].   $y^{*}(x)$ $=$ $x$ $R_{n}(x)$ $\mathrm{e}^{a x}$

[B].   $y^{*}(x)$ $=$ $x^{2}$ $R_{n}(x)$ $\mathrm{e}^{a x}$

[C].   $y^{*}(x)$ $=$ $\frac{1}{x^{2}}$ $R_{n}(x)$ $\mathrm{e}^{a x}$

[D].   $y^{*}(x)$ $=$ $R_{n}(x)$ $\mathrm{e}^{a x}$


显示答案

$y^{*}(x)$ $=$ $x^{2}$ $R_{n}(x)$ $\mathrm{e}^{a x}$

其中 $P_{n}(x)$ 为 $x$ 的 $n$ 次多项式,$R_{n}(x)$ 为 $n$ 次多项式的一般形式.

二阶常系数线性非齐次方程的特解:当 $a$ 是特征方程的单根时(B029)

问题

已知,有二阶常系数线性非齐次方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q$ $y$ $=$ $f(x)$.
其中 $p$, $q$ 均为常数.

则,当 $f(x)$ $=$ $P_{n}(x)$ $\mathrm{e}^{a x}$ 且 $a$ 是特征方程的单根时,该非齐次方程的特解 $y^{*}(x)$ $=$ $?$

选项

[A].   $y^{*}(x)$ $=$ $\frac{1}{x}$ $R_{n}(x)$ $\mathrm{e}^{a x}$

[B].   $y^{*}(x)$ $=$ $x^{2}$ $R_{n}(x)$ $\mathrm{e}^{a x}$

[C].   $y^{*}(x)$ $=$ $R_{n}(x)$ $\mathrm{e}^{a x}$

[D].   $y^{*}(x)$ $=$ $x$ $R_{n}(x)$ $\mathrm{e}^{a x}$


显示答案

$y^{*}(x)$ $=$ $x$ $R_{n}(x)$ $\mathrm{e}^{a x}$

其中 $P_{n}(x)$ 为 $x$ 的 $n$ 次多项式,$R_{n}(x)$ 为 $n$ 次多项式的一般形式.

二阶常系数线性非齐次方程的特解:当 $a$ 不是特征根时(B029)

问题

已知,有二阶常系数线性非齐次方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q$ $y$ $=$ $f(x)$.
其中 $p$, $q$ 均为常数.

则,当 $f(x)$ $=$ $P_{n}(x)$ $\mathrm{e}^{a x}$ 且 $a$ 不是特征根时,该非齐次方程的特解 $y^{*}(x)$ $=$ $?$

选项

[A].   $y^{*}(x)$ $=$ $x^{2}$ $R_{n}(x)$ $\mathrm{e}^{a x}$

[B].   $y^{*}(x)$ $=$ $x$ $R_{n}(x)$ $\mathrm{e}^{a x}$

[C].   $y^{*}(x)$ $=$ $R_{n}(x)$ $\mathrm{e}^{a x}$

[D].   $y^{*}(x)$ $=$ $R_{n}(x)$ $\mathrm{e}^{\frac{x}{a}}$


显示答案

$y^{*}(x)$ $=$ $R_{n}(x)$ $\mathrm{e}^{a x}$

其中 $P_{n}(x)$ 为 $x$ 的 $n$ 次多项式,$R_{n}(x)$ 为 $n$ 次多项式的一般形式.

二阶常系数线性非齐次方程的通解(B029)

问题

已知,有二阶常系数线性非齐次方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q$ $y$ $=$ $f(x)$.
其中 $p$, $q$ 均为常数.

又已知:
1. 该方程对应的齐次方程的通解为 $Y(x)$;
2. 用待定系数法求出的该非齐次方程的特解为 $y^{*}(x)$.

则,该非齐次方程的通解为多少?

选项

[A].   $\frac{Y(x)}{y^{*}(x)}$

[B].   $Y(x)$ $\times$ $y^{*}(x)$

[C].   $Y(x)$ $-$ $y^{*}(x)$

[D].   $Y(x)$ $+$ $y^{*}(x)$


显示答案

$Y(x)$ $+$ $y^{*}(x)$

二阶常系数线性齐次微分方程的通解:$\lambda$ $=$ $\alpha$ $\pm$ $i$ $\beta$ (复根) 时(B029)

问题

已知,有二阶常系数线性齐次微分方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q y$ $=$ $0$.

其中,$p$, $q$ 均为常数.

对应的特征方程为:

$\lambda^{2}$ $+$ $p$ $\lambda$ $+$ $q$ $=$ $0$.

则,当上述特征方程的根 $\lambda$ $=$ $\alpha$ $\pm$ $i$ $\beta$ (复根) 时,该微分方程的通解 $y(x)$ $=$ $?$

选项

[A].   $y(x)$ $=$ $\mathrm{e}^{\alpha x}$ $($ $C_{1}$ $\cos \beta x$ $+$ $C_{2}$ $\sin \beta x$ $)$

[B].   $y(x)$ $=$ $\beta$ $\mathrm{e}^{\alpha x}$ $($ $C_{1}$ $\cos x$ $+$ $C_{2}$ $\sin x$ $)$

[C].   $y(x)$ $=$ $\mathrm{e}^{\alpha x}$ $($ $C_{1}$ $\cos \beta x$ $+$ $C_{2}$ $\sin \beta x$ $)$

[D].   $y(x)$ $=$ $($ $C_{1}$ $+$ $C_{2}$ $x$ $)$ $\mathrm{e}^{\lambda_{1} x}$


显示答案

$y(x)$ $=$ $\mathrm{e}^{\alpha x}$ $($ $C_{1}$ $\cos \beta x$ $+$ $C_{2}$ $\sin \beta x$ $)$

二阶常系数线性齐次微分方程的特征方程(B029)

问题

已知,有二阶常系数线性齐次微分方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q y$ $=$ $0$.

其中,$p$, $q$ 均为常数.

则,该方程的特征方程是多少?

选项

[A].   $\lambda^{2}$ $+$ $\lambda$ $+$ $=$ $0$

[B].   $\lambda^{2}$ $+$ $p$ $\lambda$ $+$ $q$ $=$ $0$

[C].   $\frac{1}{\lambda^{2}}$ $+$ $p$ $\frac{1}{\lambda}$ $+$ $q$ $=$ $0$

[D].   $\lambda^{\prime \prime}$ $+$ $p$ $\lambda$ $+$ $q$ $=$ $0$



显示答案

$\lambda^{2}$ $+$ $p$ $\lambda$ $+$ $q$ $=$ $0$

二阶常系数线性齐次微分方程的通解:$\lambda_1$ $=$ $\lambda_2$ 时(B029)

问题

已知,有二阶常系数线性齐次微分方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q y$ $=$ $0$.

其中,$p$, $q$ 均为常数。

对应的特征方程为:

$\lambda^{2}$ $+$ $p$ $\lambda$ $+$ $q$ $=$ $0$.

则,当上述特征方程的根 $\lambda_1$ $=$ $\lambda_2$ 时,该微分方程的通解 $y(x)$ $=$ $?$

选项

[A].   $y(x)$ $=$ $\lambda_{1}$ $($ $C_{1}$ $+$ $C_{2}$ $x$ $)$ $\mathrm{e}^{x}$

[B].   $y(x)$ $=$ $C_{1}$ $\mathrm{e}^{\lambda_{1} x}$ $+$ $C_{2}$ $\mathrm{e}^{\lambda_{2} x}$

[C].   $y(x)$ $=$ $($ $C_{1}$ $x$ $+$ $C_{2}$ $x$ $)$ $\mathrm{e}^{\lambda_{1} x}$

[D].   $y(x)$ $=$ $($ $C_{1}$ $+$ $C_{2}$ $x$ $)$ $\mathrm{e}^{\lambda_{1} x}$



显示答案

$y(x)$ $=$ $($ $C_{1}$ $+$ $C_{2}$ $x$ $)$ $\mathrm{e}^{\lambda_{1} x}$

二阶常系数线性齐次微分方程的通解:$\lambda_1$ 和 $\lambda_2$ 为互异实根时(B029)

问题

已知,有二阶常系数线性齐次微分方程:

$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q y$ $=$ $0$.

其中,$p$, $q$ 均为常数。

对应的特征方程为:

$\lambda^{2}$ $+$ $p$ $\lambda$ $+$ $q$ $=$ $0$.

则,当上述特征方程的根 $\lambda_1$ 和 $\lambda_2$ 为互异实根时,该微分方程的通解 $y(x)$ $=$ $?$

选项

[A].   $y(x)$ $=$ $C_{1}$ $\mathrm{e}^{\lambda_{1} x}$ $+$ $C_{2}$ $\mathrm{e}^{\lambda_{2} x}$

[B].   $y(x)$ $=$ $\lambda_{1}$ $C_{1}$ $\mathrm{e}^{x}$ $+$ $\lambda_{2}$ $C_{2}$ $\mathrm{e}^{x}$

[C].   $y(x)$ $=$ $C$ $\mathrm{e}^{\lambda_{1} x}$ $+$ $C$ $\mathrm{e}^{\lambda_{2} x}$

[D].   $y(x)$ $=$ $C_{1}$ $\mathrm{e}^{\lambda_{1} x}$ $+$ $C_{2}$ $\mathrm{e}^{\lambda_{1} x}$



显示答案

$y(x)$ $=$ $C_{1}$ $\mathrm{e}^{\lambda_{1} x}$ $+$ $C_{2}$ $\mathrm{e}^{\lambda_{2} x}$