2014年考研数二第15题解析:极限、等价无穷小、麦克劳林公式

题目

求极限:

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x^{2} \ln (1+\frac{1}{x})}.
$$

解析

方法一

当 $x \rightarrow + \infty$ 时,$\frac{1}{x} \rightarrow 0$. 于是:

$$
\ln (1+\frac{1}{x}) \sim \frac{1}{x}.
$$

进而,有:

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x^{2} \ln (1+\frac{1}{x})} \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x^{2} \cdot \frac{1}{x}} \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x} \Rightarrow 洛必达 \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{x^{2}(e^{\frac{1}{x}}-1)-x}{1} \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} x^{2}(e^{\frac{1}{x}}-1)-x \Rightarrow 麦克劳林公式 \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} [x^{2} (\frac{1}{x} + \frac{1}{2x^{2}}) – x] \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} (x + \frac{1}{2} – x) \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{1}{2} = \frac{1}{2}.
$$

方法二

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x^{2} \ln (1+\frac{1}{x})} \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x} \cdot \frac{1}{x \ln (1+\frac{1}{x})}\Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x} \cdot \frac{1}{x} \cdot \frac{1}{\ln (1+\frac{1}{x})}\Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x} \cdot \frac{\frac{1}{x}}{\ln (1+\frac{1}{x})}.
$$

当 $x \rightarrow + \infty$ 时,$\frac{1}{x} \rightarrow 0$. 于是:

$$
\ln (1+\frac{1}{x}) \sim \frac{1}{x}.
$$

进而:

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x} \cdot \frac{\frac{1}{x}}{\ln (1+\frac{1}{x})}\Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x} \cdot 1 \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{ \int_{1}^{x}[t^{2}(e^{\frac{1}{t}}-1)-t] dt }{x} \Rightarrow 洛必达 \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} \frac{x^{2}(e^{\frac{1}{x}}-1)-x}{1} \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} x^{2}(e^{\frac{1}{x}}-1)-x \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} x^{2}(e^{\frac{1}{x}}-1) – x^{2} \cdot \frac{1}{x} \Rightarrow
$$

$$
\lim_{x \rightarrow + \infty} x^{2}(e^{\frac{1}{x}} – 1 – \frac{1}{x}).
$$

接着,令 $A = \frac{1}{x}$, $x = \frac{1}{A}$, 则有:

$$
\lim_{A \rightarrow 0} \frac{1}{A^{2}} (e^{A} – 1 – A) \Rightarrow
$$

$$
\lim_{A \rightarrow 0} \frac{e^{A} – 1 – A}{A^{2}} \Rightarrow 洛必达 \Rightarrow
$$

$$
\lim_{A \rightarrow 0} \frac{e^{A}-1}{2A} \Rightarrow
$$

$$
\lim_{A \rightarrow 0} \frac{A}{2A} = \frac{1}{2}.
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress