利用“对称初等变换”求解合同矩阵中的可逆矩阵 C

一、题目题目 - 荒原之梦

难度评级:

二、解析 解析 - 荒原之梦

由于单位矩阵可以用来记录初等变换,并且对称矩阵/单位矩阵经“对称初等变换”可以生成互为转置矩阵的两个矩阵, 所以,我们只需要对矩阵 $\boldsymbol{A}$ 进行初等行变换和初等列变换,使之转换为矩阵 $\boldsymbol{B}$, 并在此过程中用单位矩阵进行记录即可。

先进行一次

$$
\begin{aligned}
& \begin{bmatrix}
0 & 1 & 1 & \textcolor{gray}{|} & 1 & 0 & 0 \\
1 & 3 & 1 & \textcolor{gray}{|} & 0 & 1 & 0 \\
1 & 1 & 0 & \textcolor{gray}{|} & 0 & 0 & 1
\end{bmatrix} \\ \\
\xRightarrow{r_{1} \leftrightarrow r_{2}} & \begin{bmatrix}
\textcolor{orangered}{1} & \textcolor{orangered}{3} & \textcolor{orangered}{1} & \textcolor{gray}{|} & \textcolor{white}{\colorbox{green}{0}} & \textcolor{white}{\colorbox{green}{1}} & \textcolor{white}{\colorbox{green}{0}} \\
\textcolor{orangered}{0} & \textcolor{orangered}{1} & \textcolor{orangered}{1} & \textcolor{gray}{|} & \textcolor{white}{\colorbox{green}{1}} & \textcolor{white}{\colorbox{green}{0}} & \textcolor{white}{\colorbox{green}{0}} \\
\textcolor{orangered}{1} & \textcolor{orangered}{1} & \textcolor{orangered}{0} & \textcolor{gray}{|} & \textcolor{white}{\colorbox{green}{0}} & \textcolor{white}{\colorbox{green}{0}} & \textcolor{white}{\colorbox{green}{1}}
\end{bmatrix}
\end{aligned}
$$

接着进行一次

$$
\begin{aligned}
& \begin{bmatrix}
\textcolor{orangered}{1} & \textcolor{orangered}{3} & \textcolor{orangered}{1} \\
\textcolor{orangered}{0} & \textcolor{orangered}{1} & \textcolor{orangered}{1} \\
\textcolor{orangered}{1} & \textcolor{orangered}{1} & \textcolor{orangered}{0} \\
\textcolor{gray}{-} & \textcolor{gray}{-} & \textcolor{gray}{-} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \\ \\
\xRightarrow{c_{1} \leftrightarrow c_{2}} &
\begin{bmatrix}
\textcolor{springgreen}{3} & \textcolor{springgreen}{1} & \textcolor{springgreen}{1} \\
\textcolor{springgreen}{1} & \textcolor{springgreen}{0} & \textcolor{springgreen}{1} \\
\textcolor{springgreen}{1} & \textcolor{springgreen}{1} & \textcolor{springgreen}{0} \\
\textcolor{gray}{-} & \textcolor{gray}{-} & \textcolor{gray}{-} \\
\textcolor{brown}{\colorbox{yellow}{0}} & \textcolor{brown}{\colorbox{yellow}{1}} & \textcolor{brown}{\colorbox{yellow}{0}} \\
\textcolor{brown}{\colorbox{yellow}{1}} & \textcolor{brown}{\colorbox{yellow}{0}} & \textcolor{brown}{\colorbox{yellow}{0}} \\
\textcolor{brown}{\colorbox{yellow}{0}} & \textcolor{brown}{\colorbox{yellow}{0}} & \textcolor{brown}{\colorbox{yellow}{1}}
\end{bmatrix}
\end{aligned}
$$

通过上面的列变换,我们得到了:

$$
\begin{bmatrix}
\textcolor{springgreen}{3} & \textcolor{springgreen}{1} & \textcolor{springgreen}{1} \\
\textcolor{springgreen}{1} & \textcolor{springgreen}{0} & \textcolor{springgreen}{1} \\
\textcolor{springgreen}{1} & \textcolor{springgreen}{1} & \textcolor{springgreen}{0}
\end{bmatrix} = \boldsymbol{B}
$$

于是,根据矩阵初等变换中的“左行右列”原则,我们知道通过初等行变换得到的矩阵就是式子 “$\boldsymbol{C^{\top} A C}$ $=$ $\boldsymbol{B}$” 左侧的矩阵 $\boldsymbol{C} ^{\top}$, 即:

$$
\boldsymbol{C} ^{\top} = \begin{bmatrix}
\textcolor{white}{\colorbox{green}{0}} & \textcolor{white}{\colorbox{green}{1}} & \textcolor{white}{\colorbox{green}{0}} \\
\textcolor{white}{\colorbox{green}{1}} & \textcolor{white}{\colorbox{green}{0}} & \textcolor{white}{\colorbox{green}{0}} \\
\textcolor{white}{\colorbox{green}{0}} & \textcolor{white}{\colorbox{green}{0}} & \textcolor{white}{\colorbox{green}{1}}
\end{bmatrix}
$$

对应的,通过初等列变换得到的矩阵对应于式子 “$\boldsymbol{C^{\top} A C}$ $=$ $\boldsymbol{B}$” 右侧的矩阵 $\boldsymbol{C}$, 也就是本题要求解的答案:

$$
\boldsymbol{C} = \begin{bmatrix}
\textcolor{brown}{\colorbox{yellow}{0}} & \textcolor{brown}{\colorbox{yellow}{1}} & \textcolor{brown}{\colorbox{yellow}{0}} \\
\textcolor{brown}{\colorbox{yellow}{1}} & \textcolor{brown}{\colorbox{yellow}{0}} & \textcolor{brown}{\colorbox{yellow}{0}} \\
\textcolor{brown}{\colorbox{yellow}{0}} & \textcolor{brown}{\colorbox{yellow}{0}} & \textcolor{brown}{\colorbox{yellow}{1}}
\end{bmatrix}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress