一、题目
设 $A$, $B$ 为随机事件,若 $0$ $<$ $P(A)$ $<$ $1$, $0$ $<$ $P(B)$ $<$ $1$, 则 $P(A|B)$ $>$ $P(A|\bar{B})$ 的充分必要条件是 ( )
( A ) $P(B|A)$ $>$ $P(B|\bar{A})$.
( B ) $P(B|A)$ $<$ $P(B|\bar{A})$.
( C ) $P(\bar{B}|A)$ $>$ $P(B|\bar{A})$.
( D ) $P(\bar{B}|A)$ $<$ $p(B|\bar{A})$.
二、解析
本题中要找的是“充分必要条件”。根据充分必要条件的含义我们知道,如果事件 $A$ 和 $B$ 要满足充要条件就要有 $A$ $\rightarrow$ $B$ 且 $B$ $\rightarrow$ $A$.
但是,如果满足以下情况,也可以确定 $A$ 与 $B$ 是互相的充要条件:
设有事件 $A$, $B$, $C$, 当存在以下情况:
$A$ $\rightarrow$ $C$ 且 $C$ $\rightarrow$ $A$ 且 $B$ $\rightarrow$ $C$ 且 $C$ $\rightarrow$ $B$, 则 $A$ 与 $B$ 是互相的充要条件。
对于本题而言,直接把题目中所给的形式 $P(A|B)$ $>$ $P(A|\bar{B})$ 转换成选项中所给的形式,以及把选项中的形式转换成题目中所给的形式,可能难度比较大。这里我们可以考虑化简题目中所给的形式,之后再化简选项中所给的形式,由于化简过程中都是全程使用的等价符号,因此化简前的原式和化简后得到的形式是互为充要条件的,如果选项中的化简结果和题目中的化简结果一样,则可以说明它们之间存在互为充要条件的关系。
首先对题目中的原式进行化简,根据条件概率的公式,我们有:
$P(A|B)$ $>$ $P(A|\bar{B})$ $\Rightarrow$ $\frac{P(AB)}{P(B)}$ $>$ $\frac{P(A \bar{B})}{P(\bar{B})}$.
又因为:
$P(A \bar{B})$ $=$ $P[A(1-B)]$ $=$ $P(A-AB)$ $=$ $P(A)$ $-$ $P(AAB)$ $=$ $P(A)$ $-$ $P(AB)$.
所以有:
原式 $\Rightarrow$ $\frac{P(AB)}{P(B)}$ $>$ $\frac{P(A) – P(AB)}{1-P(B)}$ $\Rightarrow$ $P(AB)[1-P(B)]$ $>$ $P(B)[P(A)-P(AB)]$ $\Rightarrow$ $P(AB)$ $-$ $P(AB)P(B)$ $>$ $P(B)P(A)$ $-$ $P(B)P(AB)$ $\Rightarrow$ $P(AB)$ $>$ $P(A)P(B)$.
接下来,通过观察题目我们知道,$A$ 选项和 $B$ 选项的区别只是大于和小于符号,$C$ 选项和 $D$ 选项的区别也是如此。因此,我们只需要分别对 $A$ 选项和 $C$ 选项进行计算就可以确定哪个是正确选项了。
对 $A$ 选项进行化简:
$P(B|A)$ $>$ $P(B|\bar{A})$ $\Rightarrow$ $\frac{P(AB)}{P(A)}$ $>$ $\frac{P( \bar{A} B)}{P(\bar{A})}$.
又因为:
$P(\bar{A}B)$ $=$ $P[(1-A)B]$ $=$ $P(B-AB)$ $=$ $P(B)$ $-$ $P(ABB)$ $=$ $P(B)$ $-$ $P(AB)$.
所以有:
$\frac{P(AB)}{P(A)}$ $>$ $\frac{P(B) – P(AB)}{1-P(A)}$ $\Rightarrow$ $P(AB)[1-P(A)]$ $>$ $P(A)[P(B)$ $-$ $P(AB)]$ $\Rightarrow$ $P(AB)$ $-$ $P(AB)P(A)$ $>$ $P(A)P(B)$ $-$ $P(A)P(AB)$ $\Rightarrow$ $P(AB)$ $>$ $P(A)P(B)$.
由此,我们知道,$A$ 选项对,$B$ 选项错。
为了保险起见,我们可以在对 $C$ 选项做一个计算:
$P(\bar{B}|A)$ $>$ $P(B| \bar{A})$ $\Rightarrow$ $\frac{P(A \bar{B})}{P(A)}$ $>$ $\frac{P(\bar{A}B)}{P(\bar{A})}$ $\Rightarrow$ $P(A \bar{B})P(\bar{A})$ $>$ $P(\bar{A}B)P(A)$.
又因为:
$P(A \bar{B})$ $=$ $P(A)$ $-$ $P(AB)$;
$P(\bar{A} B)$ $=$ $P(B)$ $-$ $P(AB)$.
所以有:
$[P(A)$ $-$ $P(AB)][1-P(A)]$ $>$ $[P(B)$ $-$ $P(AB)]P(A)$ $\Rightarrow$ $P(A)$ $-$ $P(A)P(A)$ $-$ $P(AB)$ $+$ $P(AB)P(A)$ $>$ $P(B)P(A)$ $-$ $P(AB)P(A)$ $\nRightarrow$ $P(AB)$ $>$ $P(A)P(B)$.
因此,可以知道,选项 $C$ 和 $D$ 都不正确。
综上可知,正确选项是:$A$.
EOF