2017 年研究生入学考试数学一选择题第 7 题解析

题目

A,B 为随机事件,若 0<P(A)<1,0<P(B)<1, 则 P(A|B)>P(A|\bar{B}) 的充分必要条件是 ( )

( A ) P(B|A)>P(B|\bar{A}).

( B ) P(B|A)<P(B|\bar{A}).

( C ) P(\bar{B}|A)>P(B|\bar{A}).

( D ) P(\bar{B}|A)<p(B|\bar{A}).

解析

本题中要找的是“充分必要条件”。根据充分必要条件的含义我们知道,如果事件 AB 要满足充要条件就要有 A \rightarrow BB \rightarrow A.

但是,如果满足以下情况,也可以确定 AB 是互相的充要条件:

设有事件 A,B,C, 当存在以下情况:

A \rightarrow CC \rightarrow AB \rightarrow CC \rightarrow B, 则 AB 是互相的充要条件。

对于本题而言,直接把题目中所给的形式 P(A|B)>P(A|\bar{B}) 转换成选项中所给的形式,以及把选项中的形式转换成题目中所给的形式,可能难度比较大。这里我们可以考虑化简题目中所给的形式,之后再化简选项中所给的形式,由于化简过程中都是全程使用的等价符号,因此化简前的原式和化简后得到的形式是互为充要条件的,如果选项中的化简结果和题目中的化简结果一样,则可以说明它们之间存在互为充要条件的关系。

首先对题目中的原式进行化简,根据条件概率的公式,我们有:

P(A|B)>P(A|\bar{B}) \Rightarrow \frac{P(AB)}{P(B)}>\frac{P(A \bar{B})}{P(\bar{B})}.

又因为:

P(A \bar{B})=P[A(1-B)]=P(A-AB)=P(A)-P(AAB)=P(A)-P(AB).

所以有:

原式 \Rightarrow \frac{P(AB)}{P(B)}>\frac{P(A)-P(AB)}{1-P(B)} \Rightarrow P(AB)[1-P(B)]>P(B)[P(A)-P(AB)] \Rightarrow P(AB)-P(AB)P(B)>P(B)P(A)-P(B)P(AB) \Rightarrow P(AB)>P(A)P(B).

接下来,通过观察题目我们知道,A 选项和 B 选项的区别只是大于和小于符号,C 选项和 D 选项的区别也是如此。因此,我们只需要分别对 A 选项和 C 选项进行计算就可以确定哪个是正确选项了。

对 A 选项进行化简:

P(B|A)>P(B|\bar{A}) \Rightarrow \frac{P(AB)}{P(A)}>\frac{P( \bar{A} B)}{P(\bar{A})}.

又因为:

P(\bar{A}B)=P[(1-A)B]=P(B-AB)=P(B)-P(ABB)=P(B)-P(AB).

所以有:

\frac{P(AB)}{P(A)}>\frac{P(B)-P(AB)}{1-P(A)} \Rightarrow P(AB)[1-P(A)]>P(A)[P(B)-P(AB)] \Rightarrow P(AB)-P(AB)P(A)>P(A)P(B)-P(A)P(AB) \Rightarrow P(AB)>P(A)P(B).

由此,我们知道,A 选项对,B 选项错。

为了保险起见,我们可以在对 C 选项做一个计算:

P(\bar{B}|A)>P(B| \bar{A}) \Rightarrow \frac{P(A \bar{B})}{P(A)}>\frac{P(\bar{A}B)}{P(\bar{A})} \Rightarrow P(A \bar{B})P(\bar{A})> P(\bar{A}B)P(A).

又因为:

P(A \bar{B})=P(A)-P(AB); P(\bar{A} B)=P(B)-P(AB).

所以有:

[P(A)-P(AB)][1-P(A)]>[P(B)-P(AB)]P(A) \Rightarrow P(A)-P(A)P(A)-P(AB)+P(AB)P(A)>P(B)P(A)-P(AB)P(A)\nRightarrow P(AB)>P(A)P(B).

因此,可以知道,选项 C 和 D 都不正确。

综上可知,正确选项是:A

EOF