不可逆矩阵乘上一个可逆矩阵得不可逆矩阵

一、题目题目 - 荒原之梦

已知矩阵 $A = \begin{pmatrix}
0 & 2 & a \\
1 & 0 & b \\
2 & 1 & 0
\end{pmatrix}$, 三维列向量 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 线性无关, 而 $A \alpha_{1}$, $A \alpha_{2}$, $A \alpha_{3}$ 线性相关, 则参数 $a$ 和 $b$ 应满足什么关系?

难度评级:

二、解析 解析 - 荒原之梦

由题可知:

$$
|\alpha_{1}, \alpha_{2}, \alpha_{3}| \neq 0
$$

又:

$$
|A \alpha_{1}, A \alpha_{2}, A \alpha_{3}| = 0
$$

于是:

$$
|A| |\alpha_{1}, \alpha_{2}, \alpha_{3}| = 0 \Rightarrow
$$

$$
|A| = 0 \Rightarrow
$$

$$
\begin{vmatrix}
0 & 2 & a \\
1 & 0 & b \\
2 & 1 & 0
\end{vmatrix} = 0 \Rightarrow
$$

$$
\textcolor{springgreen}{
4 b + a = 0
}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress