矩阵 A 与其变体一定具有相同的特征向量吗?

一、题目题目 - 荒原之梦

已知 $\boldsymbol{A}$ 是 $n$ 阶矩阵, 下列命题中正确的是哪个?

(A) 若 $\boldsymbol{\alpha}$ 是 $\boldsymbol{A}^{\mathrm{\top}}$ 的特征向量, 那么 $\boldsymbol{\alpha}$ 是 $\boldsymbol{A}$ 的特征向量

(B) 若 $\boldsymbol{\alpha}$ 是 $\boldsymbol{A}^{*}$ 的特征向量,那么 $\boldsymbol{\alpha}$ 是 $\boldsymbol{A}$ 的特征向量

(C) 若 $\boldsymbol{\alpha}$ 是 $\boldsymbol{A}^{2}$ 的特征向量,那么 $\boldsymbol{\alpha}$ 是 $\boldsymbol{A}$ 的特征向量

(D) 若 $\boldsymbol{\alpha}$ 是 $2 \boldsymbol{A}$ 的特征向量, 那么 $\boldsymbol{\alpha}$ 是 $\boldsymbol{A}$ 的特征向量

难度评级:

二、解析 解析 - 荒原之梦

对于 $\begin{cases}
(\lambda E – A^{\top})x = 0 \\
(\lambda E – A^{*})x = 0 \\ (\lambda E – A^{2})x = 0 \\ \textcolor{springgreen}{(\lambda E – A)x = 0} \end{cases}$ 而言,由于矩阵 $\begin{cases} \lambda E – A^{\top} \\ \lambda E – A^{*} \\
\lambda E – A^{2}
\end{cases}$ 和矩阵 $\textcolor{springgreen}{\lambda E – A}$ 不一定相等,因此,得出来的解 “$x$” 也就不一定相等,进而特征向量不一定相等——A, B, C 选项都错。

对于 D 选项,我们有:

$$
2A \alpha = \lambda \alpha \Rightarrow
$$

$$
A \alpha = \frac{\lambda}{2} \alpha
$$

因此,$\alpha$ 是矩阵 A 属于特征值 $\frac{\lambda}{2}$ 的特征向量。

综上可知,D 选项正确。


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress