一、题目
$$
\int_{0}^{\frac{\pi}{2}} x \sin^{2} x \cos^{2} x \mathrm{d} x = ?
$$
难度评级:
二、解析
首先,利用区间在线公式,令 $t$ $=$ $\frac{\pi}{2}$ $+$ $0$ $-$ $x$, 则:
$$
t = \frac{\pi}{2} – x
$$
$$
x = \frac{\pi}{2} – t
$$
$$
\mathrm{d} x = – \mathrm{d} t
$$
$$
x \in (0, \frac{\pi}{2}) \Rightarrow t \in (\frac{\pi}{2}, 0)
$$
Next
于是:
$$
\int_{0}^{\frac{\pi}{2}} x \sin^{2} x \cos^{2} x \mathrm{d} x =
$$
$$
(-1) \int_{\frac{\pi}{2}}^{0} (\frac{\pi}{2} – t) \sin^{2} (\frac{\pi}{2} – t) \cos^{2} (\frac{\pi}{2} – t) \mathrm{d} t =
$$
$$
\int_{0}^{\frac{\pi}{2}} (\frac{\pi}{2} – t) \sin (\frac{\pi}{2} – t) \sin (\frac{\pi}{2} – t) \cos (\frac{\pi}{2} – t) \cos (\frac{\pi}{2} – t) \mathrm{d} t \Rightarrow
$$
Next
三角函数诱导公式(奇变偶不变,符号看象限) $\Rightarrow$
$$
\int_{0}^{\frac{\pi}{2}} (\frac{\pi}{2} – t) \sin t \sin t \cos t \cos t \mathrm{d} t =
$$
$$
\int_{0}^{\frac{\pi}{2}} (\frac{\pi}{2} – t) \sin^{2} t \cos^{2} t \mathrm{d} t =
$$
$$
\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \sin^{2} t \cos^{2} t \mathrm{d} t – \int_{0}^{\frac{\pi}{2}} t \sin^{2} t \cos^{2} t \mathrm{d} t \Rightarrow
$$
Next
令 $t$ $=$ $x$ $\Rightarrow$
$$
\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \sin^{2} x \cos^{2} x \mathrm{d} x – \int_{0}^{\frac{\pi}{2}} x \sin^{2} x \cos^{2} x \mathrm{d} x = \int_{0}^{\frac{\pi}{2}} x \sin^{2} x \cos^{2} x \mathrm{d} x \Rightarrow
$$
$$
\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \sin^{2} x \cos^{2} x \mathrm{d} x = 2 \int_{0}^{\frac{\pi}{2}} x \sin^{2} x \cos^{2} x \mathrm{d} x \Rightarrow
$$
$$
\int_{0}^{\frac{\pi}{2}} x \sin^{2} x \cos^{2} x \mathrm{d} x = \frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \sin^{2} x \cos^{2} x \mathrm{d} x =
$$
$$
\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \sin^{2} x (1 – \sin^{2} x) \mathrm{d} x
$$
$$
\frac{\pi}{4} \Bigg[ \int_{0}^{\frac{\pi}{2}} \sin^{2} x \mathrm{d} x – \int_{0}^{\frac{\pi}{2}} \sin^{4} x \mathrm{d} x \Bigg] =
$$
Next
点火公式 $\Rightarrow$
$$
\frac{\pi}{4} (\frac{1}{2} \cdot \frac{\pi}{2} – \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}) =
$$
$$
\frac{\pi}{4} (1 \cdot \frac{1}{2} \cdot \frac{\pi}{2} – \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}) =
$$
$$
\frac{\pi}{4} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi^{2}}{64}.
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!