2018年考研数二第23题解析:矩阵的秩、非齐次线性方程组、可逆矩阵

题目

已知 $a$ 是常数,且矩阵 $A = \begin{bmatrix}
1 & 2 & a\\
1 & 3 & 0\\
2 & 7 & -a
\end{bmatrix}$ 可经初等列变换化为矩阵 $B = \begin{bmatrix}
1 & a & 2\\
0 & 1 & 1\\
-1 & 1 & 1
\end{bmatrix}$.

$(Ⅰ)$ 求 $a$;

$(Ⅱ)$ 求满足 $AP = B$ 的可逆矩阵 $P$.

继续阅读“2018年考研数二第23题解析:矩阵的秩、非齐次线性方程组、可逆矩阵”

2018年考研数二第22题解析:二次型、齐次线性方程组、二次型的规范型

题目

设实二次型 $f(x_{1}, x_{2}, x_{3}) =$ $(x_{1} – x_{2} + x_{3})^{2} +$ $(x_{2} + x_{3})^{2} +$ $(x_{1} + a x_{3})^{2}$, 其中 $a$ 是参数.

$(Ⅰ)$ 求 $f(x_{1}, x_{2}, x_{3}) = 0$ 的解;

$(Ⅱ)$ 求 $f(x_{1}, x_{2}, x_{3})$ 的规范型.

继续阅读“2018年考研数二第22题解析:二次型、齐次线性方程组、二次型的规范型”

2017年考研数二第23题解析:二次型、标准型、特征值与特征向量

题目

设二次型 $f(x_{1}, x_{2}, x_{3}) =$ $2x_{1}^{2} -$ $x_{2}^{2} +$ $ax_{3}^{2} +$ $2x_{1}x_{2} -$ $8x_{1}x_{3} +$ $2x_{2}x_{3}$ 在正交变换 $x = Qy$ 下的标准型为 $\lambda_{1}y_{1}^{2} +$ $\lambda_{2} y_{2}^{2}$, 求 $a$ 的值及一个正交矩阵 $Q$.

继续阅读“2017年考研数二第23题解析:二次型、标准型、特征值与特征向量”

2017年考研数二第22题解析:特征值、基础解系、非齐次线性方程组

题目

设 $3$ 阶矩阵 $A = (\alpha_{1}, \alpha_{2}, \alpha_{3})$ 有 $3$ 个不同的特征值,且 $\alpha_{3} = \alpha_{1} + 2 \alpha_{2}$.

$(Ⅰ)$ 证明 $r(A) = 2$;

$(Ⅱ)$ 若 $\beta = \alpha_{1} + \alpha_{2} + \alpha_{3}$, 求方程组 $Ax = \beta$ 的通解.

继续阅读“2017年考研数二第22题解析:特征值、基础解系、非齐次线性方程组”

2016年考研数二第23题解析:相似对角化、特征值、特征向量、线性表示

题目

已知矩阵 $A = \begin{bmatrix}
0 & -1 & 1\\
2 & -3 & 0\\
0 & 0 & 0
\end{bmatrix}$.

$(Ⅰ)$ 求 $A^{99}$;

$(Ⅱ)$ 设 $3$ 阶矩阵 $B=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ 满足 $B^{2} = BA$. 记 $B^{100} = (\beta_{1}, \beta_{2}, \beta_{3})$, 将 $\beta_{1}$, $\beta_{2}$, $\beta_{3}$ 分别表示为 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 的线性组合.

继续阅读“2016年考研数二第23题解析:相似对角化、特征值、特征向量、线性表示”

2016年考研数二第22题解析:非齐次线性方程组、增广矩阵

题目

设矩阵 $A = \begin{bmatrix}
1 & 1 & 1-a\\
1 & 0 & a\\
a+1 & 1 & a+1
\end{bmatrix}$, $\beta = \begin{bmatrix}
0\\
1\\
2a-2
\end{bmatrix}$, 且方程组 $Ax = \beta$ 无解.

$(Ⅰ)$ 求 $a$ 的值;

$(Ⅱ)$ 求方程组 $A^{\top} A x = A^{\top} \beta$ 的通解.

继续阅读“2016年考研数二第22题解析:非齐次线性方程组、增广矩阵”

2015年考研数二第23题解析:相似矩阵、矩阵的相似对角化

题目

设矩阵 $A=\begin{bmatrix}
0 & 2 & -3\\
-1 & 3 & -3\\
1 & -2 & a
\end{bmatrix}$ 相似于矩阵 $B=\begin{bmatrix}
1 & -2 & 0\\
0 & b & 0\\
0 & 3 & 1
\end{bmatrix}$.

$(Ⅰ)$ 求 $a$, $b$ 的值;

$(Ⅱ)$ 求可逆矩阵 $P$, 使 $P^{-1} A P$ 为对角矩阵.

继续阅读“2015年考研数二第23题解析:相似矩阵、矩阵的相似对角化”

2015年考研数二第22题解析:矩阵、逆矩阵

题目

设矩阵 $A = \begin{bmatrix}
a & 1 & 0\\
1 & a & -1\\
0 & 1 & a
\end{bmatrix}$, 且 $A^{3} = O$.

$(Ⅰ)$ 求 $a$ 的值;

$(Ⅱ)$ 若矩阵 $X$ 满足 $X -$ $XA^{2} -$ $AX +$ $AXA^{2} =$ $E$, 其中 $E$ 为 $3$ 阶单位矩阵,求 $X$.

继续阅读“2015年考研数二第22题解析:矩阵、逆矩阵”

2014年考研数二第22题解析:齐次与非齐次线性方程组求解

题目

设 $A=\begin{bmatrix}
1 & -2 & 3 & -4\\
0 & 1 & -1 & 1\\
1 & 2 & 0 & -3
\end{bmatrix}$, $E$ 为三阶单位矩阵.

$(Ⅰ)$ 求方程组 $AX=0$ 的一个基础解系.

$(Ⅱ)$ 求满足 $AB=E$ 的所有矩阵 $B$.

继续阅读“2014年考研数二第22题解析:齐次与非齐次线性方程组求解”

2013年考研数二第23题解析:二次型、二次型的标准型

题目

设二次型 $f(x_{1}, x_{2}, x_{3})=$ $2(a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3})^{2} +$ $(b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3})^{2}$,

记 $\alpha=\begin{bmatrix}
a_{1}\\
a_{2}\\
a_{3}
\end{bmatrix}$, $\beta=\begin{bmatrix}
b_{1}\\
b_{2}\\
b_{3}
\end{bmatrix}$,

$(Ⅰ)$ 证明:二次型 $f$ 对应的矩阵为 $2\alpha \alpha ^{\top}+\beta \beta ^{\top}$

$(Ⅱ)$ 若 $\alpha$, $\beta$ 正交且均为单位向量,证明:$f$ 在正交变换下的标准形为 $2y_{1}^{2}+y_{2}^{2}$.

继续阅读“2013年考研数二第23题解析:二次型、二次型的标准型”

2013年考研数二第22题解析:矩阵、非齐次线性方程组求解

题目

设 $A=\begin{bmatrix}
1 & a\\
1 & 0
\end{bmatrix}$, $B=\begin{bmatrix}
0 & 1\\
1 & b
\end{bmatrix}$,

当 $a$, $b$ 为何值时,存在矩阵 $C$ 使得 $AC-CA=B$, 并求所有矩阵 $C$.

继续阅读“2013年考研数二第22题解析:矩阵、非齐次线性方程组求解”

2012年考研数二第23题解析:二次型基础、二次型化为标准型、秩

题目

已知:

$$
A =
\begin{bmatrix}
1 & 0 & 1\\
0 & 1 & 1\\
-1 & 0 & a\\
0 & a & -1
\end{bmatrix},
$$

二次型 $f(x_{1}, x_{2}, x_{3})=X^{\top}(A^{\top}A)X$ 的秩为 $2$.

$(Ⅰ)$ 求实数 $a$ 的值;

$(Ⅱ)$ 求正交变换 $x=Qy$, 将 $f$ 化为标准形。

继续阅读“2012年考研数二第23题解析:二次型基础、二次型化为标准型、秩”

2012年考研数二第22题解析:行列式的按行(列)展开定理、非齐次线性方程组求解

题目

设:

$$
A=\begin{bmatrix}
1 & a & 0 & 0\\
0 & 1 & a & 0\\
0 & 0 & 1 & a\\
a & 0 & 0 & 1
\end{bmatrix},
$$

$$
\beta=
\begin{bmatrix}
1\\
-1\\
0\\
0
\end{bmatrix}.
$$

$(Ⅰ)$ 计算行列式 $|A|$.

$(Ⅱ)$ 当实数 $a$ 为何值时,方程组 $AX=\beta$ 有无穷多解,并求其通解。

继续阅读“2012年考研数二第22题解析:行列式的按行(列)展开定理、非齐次线性方程组求解”

2011年考研数二第23题解析:实对称矩阵、特征值和特征向量、向量正交运算

题目

设 $A$ 为三阶实对称矩阵,$A$ 的秩为 $2$, 且:

$$
A \begin{bmatrix}
1 & 1\\
0 & 0\\
-1 & 1
\end{bmatrix}
=\begin{bmatrix}
-1 & 1\\
0 & 0\\
1 & 1
\end{bmatrix}.
$$

$(Ⅰ)$ 求 $A$ 的所有特征值与特征向量

$(Ⅱ)$ 求矩阵 $A$.

继续阅读“2011年考研数二第23题解析:实对称矩阵、特征值和特征向量、向量正交运算”

2011年考研数二第22题解析:线性相关、线性表示、秩、可逆矩阵

题目

设向量组 $\alpha_{1} = (1,0,1)^{\top}$, $\alpha_{2} = (0,1,1)^{\top}$, $\alpha_{3} = (1,3,5)^{\top}$ 不能由向量组 $\beta_{1}=(1,1,1)^{\top}$, $\beta_{2} = (1,2,3)^{\top}$, $\beta_{3} = (3,4,a)^{\top}$ 线性表示。

$(Ⅰ)$ 求 $a$ 的值;

$(Ⅱ)$ 将 $\beta_{1}$, $\beta_{2}$, $\beta_{3}$ 用 $\alpha_{1}$, $\alpha_{2}$, $\alpha_{3}$ 线性表示。

继续阅读“2011年考研数二第22题解析:线性相关、线性表示、秩、可逆矩阵”