题目
设函数 $f(x)$ 在 $x=0$ 处可导,且 $f(0)=0$, 则 $\lim_{x \rightarrow 0} \frac{x^{2} f(x) – 2f(x^{3})}{x^{3}} = ?$
$$
A. -2f^{‘}(0)
$$
$$
B. -f^{‘}(0)
$$
$$
C. f^{‘}(0)
$$
$$
D. 0
$$
解析
由题可得:
$$
f^{‘}(0) = \lim_{x \rightarrow 0} \frac{f(x) – f(0)}{x – 0} \Rightarrow
$$
$$
f^{‘}(0) = \lim_{x \rightarrow 0} \frac{f(x)}{x}.
$$
于是:
$$
\lim_{x \rightarrow 0} \frac{x^{2} f(x) – 2f(x^{3})}{x^{3}} =
$$
$$
\lim_{x \rightarrow 0} \frac{x^{2} f(x)}{x^{3}} – \lim_{x \rightarrow 0} \frac{2f(x^{3})}{x^{3}} =
$$
$$
\lim_{x \rightarrow 0} \frac{f(x)}{x} – \lim_{x \rightarrow 0} \frac{2f(x^{3})}{x^{3}} =
$$
$$
f^{‘}(0) – 2f^{‘}(0) =
$$
$$
-f^{‘}(0).
$$
综上可知,正确选项为 $B$.
EOF