2019年考研数二第08题解析

题目

设 $A$ 是 $3$ 阶实对称矩阵,$E$ 是 $3$ 阶单位矩阵,若 $A^{2} + A = 2E$, 且 $|A|=4$, 则二次型 $A^{T}AX$ 的规范型为 $?$

$\textcolor{Orange}{[A]}$ $y_{1}^{2}$ $+$ $y_{2}^{2}$ $+$ $y_{3}^{2}$

$\textcolor{Orange}{[B]}$ $y_{1}^{2}$ $+$ $y_{2}^{2}$ $-$ $y_{3}^{2}$

$\textcolor{Orange}{[C]}$ $y_{1}^{2}$ $-$ $y_{2}^{2}$ $-$ $y_{3}^{2}$

$\textcolor{Orange}{[D]}$ $-$ $y_{1}^{2}$ $-$ $y_{2}^{2}$ $-$ $y_{3}^{2}$

解析

本题主要是求出 $A$ 的特征值。

设 $A$ 的特征值为 $\lambda$, 则由 $A^{2} + A = 2E$ 可得:

$$
\lambda^{2} + \lambda = 2 \Rightarrow
$$

$$
\lambda^{2} + \lambda – 2 = 0 \Rightarrow
$$

$$
\lambda = \frac{- 1 \pm \sqrt{1-4(-2)}}{2} = \frac{-1 \pm 3}{2}.
$$

即 $\lambda_{1} = 1; \lambda_{2} = -2$

又因为 $|A|=4$, 则只有 $1 \cdot (-2) \cdot (-2) = 4$, 即:

$$
\lambda_{3} = -2.
$$

于是,$A$ 的三个特征值的正负分别为 $+, -, -$, 于是,二次型 $A^{T}AX$ 的规范型为:

$$
y_{1}^{2} – y_{2}^{2} – y_{3}^{2}.
$$

综上可知,正确选项为 $C$.

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress