一、题目
已知,函数 $f(x)$ 在点 $x_{0}$ 处可导, $\left\{ \alpha_{n} \right\}$ 与 $\left\{\beta_{n} \right\}$ 是两个趋于 0 的正数列, 请求解下面的极限:
$$
I=\lim _{n \rightarrow \infty} \frac{f \left(x_{0} + \alpha_{n} \right) – f \left(x_{0} – \beta_{n} \right)}{\alpha_{n} + \beta_{n} }
$$
难度评级:
二、解析
Tip
本题只说了函数 $f(x)$ 在点 $x_{0}$ 这一点处可导,没有说函数 $f(x)$ 在点 $x_{0}$ 的邻域内是否可导,此时我们只能将函数 $f(x)$ 看作在点 $x_{0}$ 的邻域内不可导,因此不能使用洛必达法则,只能使用一点处导数的定义式。
zhaokaifeng.com
简单解法
Note
在简单解法中,我们不考虑无穷小对极限运算的影响。
zhaokaifeng.com
根据函数在一点处导数的定义式,可知:
$$
\begin{aligned}
& \frac{f \left(x_{0} + \alpha_{n} \right) – f \left(x_{0} \right)}{\alpha_{n}} = f^{\prime}\left(x_{0} \right) \\ \\
& \frac{f \left(x_{0} – \beta_{n} \right) – f \left(x_{0} \right)}{-\beta_{n}} = f^{\prime}\left( x_{0} \right)
\end{aligned}
$$
于是:
$$
\begin{aligned}
I & =\lim _{n \rightarrow \infty} \left[\frac{f \left(x_{0} + \alpha_{n} \right) – f\left( x_{0} \right)}{\alpha_{n}} \frac{\alpha_{n}}{\alpha_{n} + \beta_{n} } + \frac{f \left(x_{0} – \beta_{n} \right) – f\left( x_{0} \right)}{-\beta_{n} } \frac{\beta_{n}}{\alpha_{n} + \beta_{n} }\right] \\ \\
& =\lim _{n \rightarrow \infty}\left[f^{\prime}\left( x_{0} \right) \frac{\alpha_{n} }{\alpha_{n} + \beta_{n}} + f^{\prime} \left( x_{0} \right) \frac{\beta_{n} }{\alpha_{n} + \beta_{n} } \right] \\ \\
& =\lim _{n \rightarrow \infty}\left[f^{\prime}\left( x_{0} \right) \cdot \frac{\alpha_{n} + \beta_{n} }{\alpha_{n} + \beta_{n}} \right] \\ \\
& =\lim _{n \rightarrow \infty}\left[f^{\prime}\left( x_{0} \right) \cdot 1 \right] \\ \\
& = \textcolor{springgreen}{\boldsymbol{ f^{\prime}\left( x_{0} \right) }}
\end{aligned}
$$
严格解法
Note
在严格解法中,我们需要考虑无穷小对极限运算的影响。
zhaokaifeng.com
根据“扩展的一点处导数定义式”,可知:
$$
\begin{aligned}
& \frac{f \left(x_{0} + \alpha_{n} \right) – f \left( x_{0} \right)}{\alpha_{n} } = f^{\prime} \left(x_{0} \right) + \textcolor{orange}{z_{n}} \\ \\
& \frac{f \left(x_{0} – \beta_{n} \right) – f \left( x_{0} \right)}{-\beta_{n} } = f^{\prime}\left( x_{0} \right) + \textcolor{orange}{k_{n}}
\end{aligned}
$$
其中 $\textcolor{orange}{z_{n}}$ 与 $\textcolor{orange}{k_{n}}$ 都是 $n \rightarrow \infty$ 时的无穷小量。
于是:
$$
\begin{aligned}
I & = \lim _{n \rightarrow \infty}\left[\frac{f \left(x_{0} + \alpha_{n} \right) – f \left( x_{0} \right)}{\alpha_{n}} \frac{\alpha_{n}}{\alpha_{n} + \beta_{n}} + \frac{f \left(x_{0} – \beta_{n} \right) – f \left( x_{0} \right)}{-\beta_{n}} \frac{\beta_{n}}{\alpha_{n} + \beta_{n} }\right] \\ \\
& = \lim _{n \rightarrow \infty}\left[\left(f^{\prime} \left( x_{0} \right) + \textcolor{orange}{z_{n}} \right) \frac{\alpha_{n}}{\alpha_{n} + \beta_{n}} + \left(f^{\prime} \left(x_{0} \right) + \textcolor{orange}{k_{n}} \right) \frac{\beta_{n} }{\alpha_{n} + \beta_{n} } \right] \\ \\
& = \lim _{n \rightarrow \infty}\left[f^{\prime}\left( x_{0} \right) + \frac{\alpha_{n} \textcolor{orange}{z_{n}} + \beta_{n} \textcolor{orange}{k_{n}} }{\alpha_{n} + \beta_{n} } \right] \\ \\
& = f^{\prime}\left( x_{0} \right) + \textcolor{orangered}{ \lim _{n \rightarrow \infty} \frac{\alpha_{n} \textcolor{orange}{z_{n}} + \beta_{n} \textcolor{orange}{k_{n}} }{\alpha_{n} + \beta_{n} } }
\end{aligned}
$$
又因为,当 $n \rightarrow \infty$ 的时候,有:
$$
\begin{aligned}
0 & \leqslant \left| \textcolor{orangered}{ \lim _{n \rightarrow \infty} \frac{\alpha_{n} \textcolor{orange}{z_{n}} + \beta_{n} \textcolor{orange}{k_{n}} }{\alpha_{n} + \beta_{n} } } \right| \\ \\
\Rightarrow \ & \leqslant \left| \lim_{x \rightarrow \infty} \left( \frac{\alpha_{n} \textcolor{orange}{ z_{n} }}{\alpha_{n} + \beta_{n}} + \frac{\beta_{n} \textcolor{orange}{ k_{n} }}{\alpha_{n} + \beta_{n}} \right) \right| \\ \\
\Rightarrow \ & \textcolor{gray}{
\begin{cases}
\frac{\alpha_{n}}{\alpha_{n} + \beta_{n}} < 1 \\ \\
\frac{\beta_{n}}{\alpha_{n} + \beta_{n}} < 1
\end{cases}
} \\ \\
\Rightarrow \ & \leqslant \left| \lim_{n \rightarrow \infty} \left( z_{n} + k_{n} \right) \right| \\ \\
\Rightarrow \ & \leqslant \left| \lim_{n \rightarrow \infty} \textcolor{orange}{ z_{n} } \right| + \left| \lim_{n \rightarrow \infty} \textcolor{orange}{ k_{n} } \right| \rightarrow 0
\end{aligned}
$$
即:
$$
\left| \textcolor{orangered}{ \lim _{n \rightarrow \infty} \frac{\alpha_{n} \textcolor{orange}{z_{n}} + \beta_{n} \textcolor{orange}{k_{n}} }{\alpha_{n} + \beta_{n} } } \right| \rightarrow 0 ^{+}
$$
综上可知:
$$
\textcolor{springgreen}{
\boldsymbol{
I = f^{\prime} \left( x_{0} \right)
}
}
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!