被积函数有 4 次幂的时候,先尝试凑 2 次幂

一、题目题目 - 荒原之梦

二、解析 解析 - 荒原之梦

由于被积函数 $\frac{1}{x^{4} + 1}$ 的分母中含有 $x$ 的四次幂,所以,我们要在其分子中凑出来 $x$ 的二次幂,因为四次幂除以二次幂仍然可以得到二次幂,从而实现被积函数中次幂的统一。如果我们在分子中凑 $x$ 的三次幂,则就无法轻易实现被积函数中次幂的统一,所以:

$$
\begin{aligned}
I = & \ \int \frac{1}{x^{4} + 1} \mathrm{~ d} x \\ \\
= & \ \frac{1}{2} \int \frac{\left(\textcolor{orangered}{ x^{2} } + 1 \right) – \left(\textcolor{orangered}{ x^{2} } – 1 \right) }{ x^{4} + 1 } \mathrm{~d} x \\ \\
= & \ \frac{1}{2} \int \frac{x^{2} + 1}{x^{4} + 1} \mathrm{~d} x – \frac{1}{2} \int \frac{x^{2} – 1}{x^{4} + 1 } \mathrm{~d} x \\ \\
= & \ \frac{1}{2} \int \frac{\frac{x^{2}}{\textcolor{springgreen}{ x^{2} }} + \frac{1}{\textcolor{springgreen}{x^{2}}}}{\frac{x^{4}}{\textcolor{springgreen}{x^{2}}} + \frac{1}{\textcolor{springgreen}{x^{2}}}} \mathrm{~d} x – \frac{1}{2} \int \frac{\frac{x^{2}}{\textcolor{springgreen}{x^{2}}} – \frac{1}{\textcolor{springgreen}{x^{2}}}}{\frac{x^{4}}{\textcolor{springgreen}{x^{2}}} + \frac{1}{\textcolor{springgreen}{x^{2}}} } \mathrm{~d} x \\ \\
= & \ \frac{1}{2} \int \frac{\textcolor{pink}{1 + \frac{1}{x^{2}}}}{x^{2} + \frac{1}{x^{2} }} \mathrm{~d} x – \frac{1}{2} \int \frac{\textcolor{pink}{1 – \frac{1}{x^{2} }}}{x^{2} + \frac{1}{x^{2} }} \mathrm{~d} x \\ \\
= & \ \frac{1}{2} \int \frac{\textcolor{pink}{\mathrm{d} \left(x-\frac{1}{x} \right) }}{ \left(x – \frac{1}{x} \right)^{2} + 2 } – \frac{1}{2} \int \frac{\textcolor{pink}{\mathrm{d} \left ( x + \frac {1}{x} \right) }}{ \left( x + \frac{1}{x} \right)^{2} – 2 } \\ \\
\Rightarrow & \ \textcolor{gray}{\begin{cases}
t_{1} = x – \frac{1}{x} \\
t_{2} = x + \frac{1}{x}
\end{cases}} \\ \\
= & \ \frac{1}{2} \int \frac{1}{t_{1}^{2} + 2} \mathrm{~d} t_{1} – \frac{1}{2} \int \frac{1}{t_{2}^{2} – 2} \mathrm{~d} t_{2} \\ \\
= & \ \frac{1}{2} \int \frac{1}{2(\frac{t_{1}^{2}}{2} + 1)} \mathrm{~d} t_{1} – \frac{1}{2} \int \frac{1}{(t_{2} + \sqrt{2}) (t_{2} – \sqrt{2})} \mathrm{~d} t_{2} \\ \\
= & \ \frac{1}{4} \int \frac{1}{\left( \frac{t_{1}}{\sqrt{2}} \right)^{2} + 1} \mathrm{~d} t_{1} – \textcolor{yellow}{ \frac{1}{2} \cdot \frac{1}{2 \sqrt{2}} } \int \left( \frac{1}{t_{2} + \sqrt{2}} – \frac{1}{t_{2} – \sqrt{2}} \right) \mathrm{~d} t_{2} \\ \\
= & \ \frac{\sqrt{2}}{4} \int \frac{1}{\left( \frac{t_{1}}{\sqrt{2}} \right)^{2} + 1} \mathrm{~d} \left( \frac{t_{1}}{\sqrt{2}} \right) + \textcolor{yellow}{\frac{\sqrt{2}}{8}} \int \left( \frac{1}{t_{2} + \sqrt{2}} – \frac{1}{t_{2} – \sqrt{2}} \right) \mathrm{~d} t_{2} \\ \\
= & \ \frac{\sqrt{2}}{4} \arcsin \left( \frac{t_{1}}{\sqrt{2}} \right) + \frac{\sqrt{2}}{8} \ln \left| \frac{t_{2} + \sqrt{2}}{t_{2} – \sqrt{2}} \right| \\ \\
\Rightarrow & \ \textcolor{gray}{\begin{cases}
t_{1} = x – \frac{1}{x} \\
t_{2} = x + \frac{1}{x}
\end{cases}} \\ \\
= & \ \frac{\sqrt{2}}{4} \arcsin \frac{x – \frac{1}{x}}{\sqrt{2}} + \frac{\sqrt{2}}{8} \ln \left| \frac{x + \frac{1}{x} + \sqrt{2}}{x + \frac{1}{x} – \sqrt{2}} \right| \\ \\
= & \ \textcolor{springgreen}{\boldsymbol{ \frac{\sqrt{2}}{4} \arctan \frac{x^{2} – 1}{\sqrt{2} x } + \frac{\sqrt{2} }{8} \ln \left| \frac{x^{2} + \sqrt{2} x + 1 }{x^{2} – \sqrt{2} x + 1 } \right| + C }} \\ \\
= & \ \textcolor{springgreen}{\boldsymbol{ \frac{\sqrt{2}}{4} \arctan \frac{x^{2} – 1}{\sqrt{2} x } \ – \ \frac{\sqrt{2} }{8} \ln \left| \frac{x^{2} – \sqrt{2} x + 1 }{x^{2} + \sqrt{2} x + 1 } \right| + C }}
\end{aligned}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress