一、前言 ![前言 - 荒原之梦](https://documents.zhaokaifeng.com/uploads/2017/06/06/27d32864d84c052488cc5282d2051ce384fc5da0a8d27fd8250711674382591b80cf1f6df48c8b93891fe0874a5a5739d1bf2be3246a1c8cf0274958030b1195.svg)
通过本文,我们将理解为什么对于
二、解析 ![解析 - 荒原之梦](https://documents.zhaokaifeng.com/uploads/2017/06/06/6fff698aa5c66c6c7a143e3d2a00fa8ee7eab76be5360d89eb43a03143848e8cd60377c76bf830c93ec6603be5af661d9c52238834792ea548bf14de10b05ad9.svg)
假如我们有行向量
此时:
进一步,对于下面的向量,虽然零与非零的部分不是一对一的相互抵消,但这两个向量相乘也得零:
此时:
或者:
此时:
又或者:
此时:
因此,我们可以推知,对于两个
因此,对于
上面是通过举例的方式得出了矩阵的平方为零矩阵,则对应的矩阵的秩所具有的性质。其实,我们还可以记住如下这一规律,以便于更灵活的解题:
对于一个不满秩的方阵(不可逆方阵),每进行一次自乘运算,原矩阵的秩都会减小
也就是说,如果
*
**
***
或者:
高等数学![箭头 - 荒原之梦](https://documents.zhaokaifeng.com/uploads/2017/06/06/c19692009799eac2a7eb5b9d73167ae3dd6cad169ea3ccdbeb97491b80e87593cfa7384844ec1720d0fb9cf5f00ac456f249d047b61ce2d90bdd241e042f4d89.svg)
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数![箭头 - 荒原之梦](https://documents.zhaokaifeng.com/uploads/2017/06/06/c19692009799eac2a7eb5b9d73167ae3dd6cad169ea3ccdbeb97491b80e87593cfa7384844ec1720d0fb9cf5f00ac456f249d047b61ce2d90bdd241e042f4d89.svg)
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题![箭头 - 荒原之梦](https://documents.zhaokaifeng.com/uploads/2017/06/06/c19692009799eac2a7eb5b9d73167ae3dd6cad169ea3ccdbeb97491b80e87593cfa7384844ec1720d0fb9cf5f00ac456f249d047b61ce2d90bdd241e042f4d89.svg)
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。