一、题目
已知 $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ 均为四维列向量, $\left|\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{1}\right|=a$, $\left|\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{2}, \boldsymbol{\alpha}_{3}\right|=b$, 则 $\left|\boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{1}+2 \boldsymbol{\beta}_{2}\right|=?$
难度评级:
二、解析
$$
\left(\alpha_{3}, \alpha_{2}, \alpha_{1}, \beta_{1}+2 \beta_{2}\right)=
$$
$$
\left(\alpha_{3}, \alpha_{2}, \alpha_{1}, \beta_{1}\right)+\left(\alpha_{3}, \alpha_{2}, \alpha_{1}, 2 \beta_{2}\right)=
$$
$\left(\alpha_{3}, \alpha_{2}, \alpha_{1}, \beta_{1}\right)$ 需要经过 $3$ 次列变换变成 $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}\right)$, 需要加负号,而 $\left(\alpha_{3}, \alpha_{2}, \alpha_{1}, 2 \beta_{2}\right)$ 需要经过 $4$ 次列变换变成 $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 2\beta_{2}\right)$, 不需要加负号。
$$
-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}\right)+2\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{2}\right)=
$$
$$
-a+2 b=2 b-a
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!