奇函数必须关于原点斜对称(一般情况下奇函数在原点处都有定义)

一、题目题目 - 荒原之梦

下列说法中错误的是哪个?

(A) 设 $f(x)$ 在 $[-a, a]$ 上连续为奇函数, 则 $f(x)$ 在 $[-a, a]$ 上的全体原函数为偶函数

(B) 设 $f(x)$ 在 $[-a, a]$ 上连续为偶函数, 则 $f(x)$ 在 $[-a, a]$ 上的全体原函数为奇函数

(C) 设 $f(x)$ 在 $(-\infty,+\infty)$ 内连续, 以 $T$ 为周期且为奇函数, 则 $\int_{0}^{x} f(t) \mathrm{d} t$ 也是以 $T$ 为周期的函数

(D) 设 $f(x)$ 在 $(-\infty,+\infty)$ 内连续, 以 $T$ 为周期, 又 $\int_{0}^{+\infty} f(x) \mathrm{d} x$ 收敛, 则 $\int_{0}^{x} f(t) \mathrm{d} t$ 也是以 $T$ 为周期的函数

难度评级:

二、解析 解析 - 荒原之梦

求导或者积分会改变奇偶性,奇函数的原函数一定是偶函数,A 对;

由于奇函数必须关于原点斜对称,而偶函数可以不经过原点,因此,不是非奇函数的导数也可能是偶函数,例如 $y = x^{3} + 1$ 的导数 $y^{\prime} = 3x^{2}$ 就是一个偶函数,但是 $y = x^{3} + 1$ 并不是奇函数,B 错;

变限积分不会改变函数的周期,C、D 对。


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress