嵌套变限积分增强版:内层积分的被积函数和积分上下限中都含有外层被积变量

一、题目题目 - 荒原之梦

已知函数 f(x) 连续,且 12f(x)dx = 1, F(t) = 1t[f(y)ytf(x)dx]dy, 则 F(2)=?

注意:本题中的“嵌套积分”只是对一个一元函数做了两次积分运算,并不是二元函数所对应的“二重积分”——嵌套积分与二重积分就像复合函数和二元函数。

难度评级:

二、解析 解析 - 荒原之梦

观察可知,本题的关键就是对 F(t) = 1t[f(y)ytf(x)dx]dy 进行求导运算,然后将 t=2 代入求导所得的式子即可。

但是我们不能直接对 F(t) = 1t[f(y)ytf(x)dx]dy 进行求导,因为外层积分的变量 t 和内侧积分的变量 y 都同时存在于 ytf(x)dx 的积分上下限中,直接代入会导致式子失效:

F(t)=1t[f(y)ytf(x)dx]dy

F(t)=f(t)ttf(x) dx

同时,我们也无法通过进行变量替换的方式消除上述问题,因此,只能尝试对这个式子进行变形后再处理。

而变形处理的思路就是:变限积分的积分符号除了可以使用求导的方式消去之外,还可以直接使用传统的积分运算的方式消去——因此,我们可以先尝试消去本题的嵌套积分中的外层积分,而所用的具体方法就是分部积分法。

首先,由于:

g(y)=ytf(x) dxg(y)=tyf(x) dx

g(y)=f(y)

于是:

F(t)=1t[f(y)ytf(x) dx] dy

F(t)=1t[ytf(x) dx] d[ytf(x) dx]

注意:上一步只是使用分部积分法做了一个等价变形,并没有使用变量替换,因此不需要改变原式中 “1t” 的积分上下限。

F(t)=12[ytf(x) dx]2|y=1y=t

F(t)=12[0(1tf(x) dx)2]

F(t)=12[1tf(x) dx]2

进而:

F(t)=122[1tf(x) dx]f(t)

于是:

t=2

F(2)=12f(x) dxf(2)=1f(2)=f(2).


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress