计算极限 $\lim_{x \rightarrow \infty}$ $\big[$ $\frac{x^{2}}{(x – a) (x + b)}$ $\big] ^{x}$

一、题目题目 - 荒原之梦

$$
\lim_{x \rightarrow \infty} \Big[ \frac{x^{2}}{(x – a) (x + b)} \Big]^{x} = ?
$$

难度评级:

二、解析 解析 - 荒原之梦

$$
\lim_{x \rightarrow \infty} \Big[ \frac{x^{2}}{(x – a) (x + b)} \Big]^{x} =
$$

$$
\lim_{x \rightarrow \infty} \Big( \frac{x}{x – a} \cdot \frac{x}{x + b} \Big)^{x} =
$$

$$
\lim_{x \rightarrow \infty} \Big( \frac{x}{x – a}\Big)^{x} \cdot \Big(\frac{x}{x + b} \Big)^{x} =
$$

Next - 荒原之梦 Next Next - 荒原之梦

$$
\lim_{x \rightarrow \infty} \Big[ 1 + \big(\frac{x}{x – a} – 1 \big) \Big]^{x} \cdot \Big[ 1 + \big( \frac{x}{x + b} – 1 \big) \Big]^{x} =
$$

$$
\lim_{x \rightarrow \infty} \Big( 1 + \frac{a}{x – a} \Big)^{x} \cdot \Big( 1 + \frac{-b}{x + b} \Big)^{x} =
$$

$$
\lim_{x \rightarrow \infty} \Big( 1 + \frac{a}{x – a} \Big)^{\frac{x-a}{a} \cdot \frac{ax}{x-a}} \cdot \Big( 1 + \frac{-b}{x + b} \Big)^{\frac{x+b}{-b} \cdot \frac{-bx}{x+b}} =
$$

$$
\lim_{x \rightarrow \infty} e^{\frac{ax}{x-a}} \cdot e^{\frac{-bx}{x+b}} =
$$

$$
\lim_{x \rightarrow \infty} e^{\frac{ax}{x-a} + \frac{-bx}{x+b}} =
$$

$$
\lim_{x \rightarrow \infty} e^{\frac{ax}{x} + \frac{-bx}{x}} =
$$

$$
\lim_{x \rightarrow \infty} e^{a-b}.
$$

Next - 荒原之梦 Next Next - 荒原之梦

方法二

$$
\lim_{x \rightarrow \infty} \Big[ \frac{x^{2}}{(x – a) (x + b)} \Big]^{x} =
$$

$$
\lim_{x \rightarrow \infty} \Big( \frac{x}{x – a} \cdot \frac{x}{x + b} \Big)^{x} =
$$

$$
\lim_{x \rightarrow \infty} \Big( \frac{x}{x – a}\Big)^{x} \cdot \Big(\frac{x}{x + b} \Big)^{x} =
$$

Next - 荒原之梦 Next Next - 荒原之梦

$$
\lim_{x \rightarrow \infty} \Big( \frac{x – a}{x}\Big)^{-x} \cdot \Big(\frac{x + b}{x} \Big)^{-x} =
$$

$$
\lim_{x \rightarrow \infty} \Big( 1 – \frac{a}{x}\Big)^{-x} \cdot \Big(1 + \frac{b}{x} \Big)^{-x} =
$$

$$
\lim_{x \rightarrow \infty} \Big( 1 – \frac{a}{x}\Big)^{\frac{x}{-a} \cdot \frac{ax}{x}} \cdot \Big(1 + \frac{b}{x} \Big)^{\frac{x}{b} \cdot \frac{-bx}{x}} =
$$

$$
\lim_{x \rightarrow \infty} e^{\frac{ax}{x}} \cdot e^{\frac{-bx}{x}} =
$$

$$
\lim_{x \rightarrow \infty} e^{a} \cdot e^{-b} =
$$

$$
\lim_{x \rightarrow \infty} e^{a – b}.
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress