一、前言
在本文中,荒原之梦考研数学将给出扩展的无穷限的反常积分比阶审敛法和扩展的无界函数的反常积分比阶审敛法。
继续阅读“扩展的无穷限和无界函数的反常积分审敛法”已知 $a$ $<$ $b$, 请证明:
$$
\frac { 1 } { b } > \frac { 2 a } { a ^ { 2 } + b ^ { 2 } }
$$
难度评级:
继续阅读“一个常用不等式的不常见证明:1/b > 2a/(a^2 + b^2)”我们知道,涉及无穷小量的除法运算可以用洛必达等方法辅助解决,涉及无穷小量的乘法运算也有很多辅助解决的方法,但由于加减运算没有乘除运算对无穷量的作用力度强,所以,有时候我们突然遇到无穷小量之间的的减法运算(如果是加法运算可以转换为减法运算)时,可能会觉得无从下手。
其实,减法运算也有很多等价无穷小的运算公式,荒原之梦考研数学在这里给同学们做一个汇总。
继续阅读“减法运算中常用的等价无穷小公式汇总”由于不经常使用,三角函数的和差化积和积化和差公式是我们在考研数学的复习过程中很容易忽略的一个知识点。
虽然大部分题目不使用和差化积和积化和差公式也能做出来,但掌握这些公式,对于开拓我们的解题思路,甚至在必要的时候用来“救急”都是很有必要的。
同时,在本文中,荒原之梦考研数学还会给大家提供一个原创的记忆这些公式的方法,帮助大家更高效的记忆和掌握这些公式。
继续阅读“用简化公式快速记住三角函数的和差化积与积化和差公式(荒原之梦考研数学原创)”下面这两个式子有什么区别:
$$
[f^{\textcolor{orangered}{\prime}}(-x)]
$$
$$
[f(-x)]^{\textcolor{orangered}{\prime}}
$$
在本文中,「荒原之梦考研数学」将带你一探究竟!
继续阅读“求导符号的位置变了,含义很可能也就变了”在考研数学真题,以及一些参考资料中,出于表述的严谨性和习惯,我们常常会遇到一些数学符号。准确的理解和掌握这些数学符号的含义,对于打牢基础,在考场上不会“因小失大”而言非常重要。
在本文中,荒原之梦考研数学将把考研数学中常见的一些数学符号汇总在这里,希望帮助大家更好的掌握这部分内容。
继续阅读“考研数学中常见数学符号的含义”在求解一个函数的原函数的时候,我们常用的方法就是计算其不定积分。但其实,我们也可以使用计算其变上限积分的方式求解原函数。
那么,这两种求解原函数的方法有哪些区别呢?
在本文中,荒原之梦考研数学将通过一些图片和实例,帮助大家理解这一知识点。
三角函数 $y = \sin x$ 是考研数学中常用的函数之一。在本文中,荒原之梦考研数学将给出关于三角函数 $y = \sin x$ 的函数图像以及常用的特殊点,以供大家参考查阅。
难度评级:
继续阅读“三角函数 sin x 的函数图像和常用特殊点”一般情况下,对于下面这些量是无穷大量,我们应该是没有疑问的:
$$
\begin{aligned}
& \lim_{ x \rightarrow 0^{+} } \ln x & \rightarrow \infty \\ \\
& \lim_{ x \rightarrow 0^{+} } \frac{1}{x} & \rightarrow \infty \\ \\
& \lim_{ x \rightarrow + \infty } x & \rightarrow \infty \\ \\
& \lim_{ x \rightarrow + \infty } \ln x & \rightarrow \infty \\ \\
& \lim_{ x \rightarrow + \infty } x^{2} & \rightarrow \infty \\ \\
& \lim_{ x \rightarrow + \infty } e^{x} & \rightarrow \infty
\end{aligned}
$$
但是,对于下面这些量是否是无穷大量,我们可能会有一些疑问,在本文中,荒原之梦考研数学将帮助大家解决这些疑问:
$$
\begin{aligned}
& \lim_{ x \rightarrow 0 } \left( \frac{1}{x^{2}} \sin \frac{1}{x} \right) & \rightarrow ? \\ \\
& \lim_{n \rightarrow \infty} (-1)^{n} (\sqrt{n}) & \rightarrow ?
\end{aligned}
$$
利用零点定理和单调性判断函数在一个区间内零点的具体个数或者大致个数属于考研数学中一类基础题目。在本文中,荒原之梦考研数学将通过多张函数图像,形象的阐述清楚该考点的原理,还会通过一些例题,加深同学们对该考点的理解。
在《快速判断函数奇偶性的方式汇总》这篇笔记中,我们涉及了复合运算对函数奇偶性的影响。在本文,荒原之梦考研数学将只从复合运算的角度,总结复合运算对单调性和奇偶性的影响,以供同学们参考。
继续阅读“复合运算对单调性和奇偶性的影响”已知函数 $z=f(x, y)$ 的全微分 $\mathrm{~d} z$ $=$ $\left(a y-x^{2}\right) \mathrm{~d} x$ $+$ $\left(a x-y^{2}\right) \mathrm{~d} y$, $(a>0)$ 则函数 $f(x, y)$
(A) 无极值点
(B) 点 $(a, a)$ 为极小值点
(C) 点 $(a, a)$ 为极大值点
(D) 是否有极值点与 $a$ 的取值有关
难度评级:
本题的难点在于从题目给出的全微分式子中确定一阶偏导函数的表达式。
设 $f(x)$ $=$ $\lim \limits_{n \rightarrow \infty} \frac{-x+x \mathrm{e}^{n x}}{1+\mathrm{e}^{n x}}$, 则 $F(x)$ $=$ $\int_{0}^{x} f(t) \mathrm{d} t$ 是 ( )
(A) 可导的偶函数
(C) 连续但不可导的偶函数
(B) 可导的奇函数
(D) 连续但不可导的奇函数
难度评级:
继续阅读“变上限积分一定可导吗?”