一个不能用洛必达运算也不能用泰勒公式的无穷小题目

一、题目题目 - 荒原之梦

已知 $f(x)=1-\cos x$, 则:

$$
I = \lim \limits_{x \rightarrow 0} \frac{(1-\sqrt{\cos x})(1-\sqrt[3]{\cos x})(1-\sqrt[4]{\cos x})(1-\sqrt[5]{\cos x})}{f\{ f[f(x)] \}}=?
$$

难度评级:

继续阅读“一个不能用洛必达运算也不能用泰勒公式的无穷小题目”

变限积分被积函数中包含的变量不好处理?先整体代换试试!

一、题目题目 - 荒原之梦

已知 $f(x)$ 可导, $f(0)=0$, $f^{\prime}(0)=2$, $F(x)$ $=$ $\int_{0}^{x} t^{2} f\left(x^{3}-t^{3}\right) \mathrm{d} t$, $g(x)=\frac{x^{7}}{5}$ $+$ $\frac{x^{6}}{6}$, 则 当 $x \rightarrow 0$ 时, $F(x)$ 是 $g(x)$ 的等价无穷小吗?

难度评级:

继续阅读“变限积分被积函数中包含的变量不好处理?先整体代换试试!”

一般规律:大于 1 时越乘越大,小于 1 时越乘越小

一、题目题目 - 荒原之梦

已知正数列 $\left\{a_{n}\right\}$ 满足 $\lim \limits_{n \rightarrow \infty} \int_{0}^{a_{n}} x^{n} \mathrm{~d} x$ $=$ $2$, 则 $\lim \limits_{n \rightarrow \infty} a_{n}$ $=$ $?$

难度评级:

继续阅读“一般规律:大于 1 时越乘越大,小于 1 时越乘越小”

当变限积分和无穷限反常积分在一起会碰撞出什么火花?

一、题目题目 - 荒原之梦

已知 $b>0$ 为常数, $\varphi(x)$ $=$ $\frac{2}{\sqrt{\pi b}} \int_{0}^{x} \mathrm{e}^{-\frac{t^{2}}{b}} \mathrm{~d} t$, 并且 $\int_{0}^{+\infty} \mathrm{e}^{-t^{2}} \mathrm{~d} t$ $=$ $\frac{\sqrt{\pi}}{2}$, 则 $\int_{0}^{+\infty}[1-\varphi(x)] \mathrm{d} x = ?$

难度评级:

继续阅读“当变限积分和无穷限反常积分在一起会碰撞出什么火花?”

求解由无穷限反常积分式子确定的“隐积分”

一、题目题目 - 荒原之梦

已知 $\int_{0}^{+\infty} f(x) \mathrm{d} x$ 收敛, $f(x)$ $=$ $\frac{1}{1+x^{2}}$ $-$ $\frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{x}} \int_{0}^{+\infty} f(x) \mathrm{d} x$, 则 $\int_{0}^{+\infty} f(x) \mathrm{d} x = ?$

难度评级:

继续阅读“求解由无穷限反常积分式子确定的“隐积分””

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress