一、前言 
在本文中,「荒原之梦考研数学」将通过计算下面三个式子的导数
在本文中,「荒原之梦考研数学」将通过计算下面三个式子的导数
在做题的时候,我们可能需要借助同时在等式的等号两边做某种操作的方式对原式进行变形处理,例如对等号两边同时取对数、同时求导、同时取倒数、同时乘以或者除以某个量等。
但是,在做这些操作的时候,我们必须要注意“对等原则”。所谓“对等原则”,就是等号两边无论各自有多少组成部分,都要以等号为界,分为两个整体,做任何操作,都要以这两个整体为基本单位进行。
接下来,「荒原之梦考研数学」将通过一些实际的例子,给同学们讲清楚这个计算过程中的易错点。
继续阅读“对等式等号两边同时做操作的时候要注意“对等原则””
Note
换句话说,所谓“对等原则”要解决的问题就是:对等式两边取对数,是对整体“取”,还是各项“取”?
zhaokaifeng.com
在本文中,「荒原之梦考研数学」将为同学们总结整理被积函数中含有 “
泰勒公式有很多用处,例如求解函数的
在高等数学的学习中,我们会遇到两种“零”:等于零(
那么,在计算的时候,这两种“零”有哪些不同点和相同点呢?在本文中,「荒原之梦考研数学」就给同学们详细讲解这一知识点。
继续阅读“数字零和极限零有什么区别?”在计算的时候,一个数字是大于
考场上的每一分每一秒都很关键,所以,在保证正确的情况下,做题速度越快,竞争优势也就越大。为此,「荒原之梦考研数学」为同学们总结归纳了对含有
在考研高等数学中,我们会接触到很多种积分符号,这些积分符号有着各自的书写方式与含义。在本文中,「荒原之梦考研数学」就汇总常见的积分符号及其含义,在文末还有一段积分符号的历史介绍给大家哦~
继续阅读“考研数学中各种积分符号的写法与含义汇总”「荒原之梦考研数学」的这篇文章的标题看上去很“无聊”,因为现在正在看这篇文章的同学,几乎不会有人不知道怎么展开
那么,这篇文章的目的是什么呢?
其实,这篇文章只是想表达:
在考研数学的学习中,我们只要能保证遵守最基本的定理逻辑,在定理形式的理解和表达上,就可以自己怎么喜欢怎么来,怎么方便怎么来。
继续阅读“a+b 的平方到底该怎么展开?”在本文中,荒原之梦考研数学将通过图示的方式,给大家阐述清楚数列的有界、发散、收敛这三个概念之间的异同点,方便大家在其他辅导资料中常见的定义和举特例的方式之外,用更加形象的方式理解这三者之间的区别。
继续阅读“图示:数列的有界、发散与收敛间的区别与联系”
Tip
在本的示意图中:
zhaokaifeng.com
[1]. 横坐标表示数列的项数, 从左向右依次增大;
[2]. 纵坐标表示数列的值, 从下到上依次增大;
[3]. 同一个坐标系中不同颜色的点对应的项数不相等,但都属于同一个数列
我们知道,泰勒公式不仅能近似表示某个展开点处的函数情况,还能够近似表示该展开点周围一定范围内的被展开点的处的函数情况(相关文章可以参考这里)。
那么,在本文中,荒原之梦考研数学将通过比较函数