一、前言 
高斯函数、高斯积分和正态分布之间具有密切的关系,搞明白这些关系,有助于我们对题目和解题方式有更清晰的理解。
在本文中,「荒原之梦考研数学」将为同学们讲明白这些概念之间的关系。
继续阅读“高斯函数、高斯积分与正态分布之间的关系”高斯函数、高斯积分和正态分布之间具有密切的关系,搞明白这些关系,有助于我们对题目和解题方式有更清晰的理解。
在本文中,「荒原之梦考研数学」将为同学们讲明白这些概念之间的关系。
继续阅读“高斯函数、高斯积分与正态分布之间的关系”在一些概率论和数理统计的题目或者学习资料中,我们可能会看到如下这样的写法:
$$
\begin{pmatrix}
n \\
k
\end{pmatrix}
$$
那么,上面这个式子是什么意思呢?在本文中,「荒原之梦考研数学」就给同学们详细解答一下。
继续阅读“概率论中的 $\begin{pmatrix} n \\ k \end{pmatrix}$ 表示什么意思?”“抽样”是概率论中的一个关键概念,一般情况下,“抽象”特指“简单随机抽样”。
那么,什么是“简单随机抽样”,什么不是“简单随机抽样”呢?
在本文中,「荒原之梦考研数学」就给同学们讲解清楚这一问题。
继续阅读“有限总体的大量无放回抽样不是简单随机抽样”切比雪夫不等式(又称:切贝雪夫不等式,英文名称:chebyshev’s theorem)在概率论与数理统计中这门课程中是一个非常重要的概念,该不等式在大数定理中也发挥着重要的作用。
在本文中,「荒原之梦考研数学」就通过直观的文字与图形化解释,帮助同学们更好地理解切比雪夫不等式。
继续阅读“切比雪夫不等式的含义及其可视化”在本文中,「荒原之梦考研数学」将通过对二维连续型随机变量几何意义的解释,让同学们能够建立对二维连续型随机变量更直观的理解。
我们知道,连续型随机变量 $\xi$ 的分布函数 $F$ 能够表示为非负可积的概率密度函数(分布密度函数)$p$ 在区间 $(- \infty, x)$ 上的积分,即:
$$
F(x) = \int_{\textcolor{springgreen}{\boldsymbol{ – \infty }}}^{x} p(t) \mathrm{~d} t
$$
其中,$- \infty < x < + \infty$.
但是,为什么对 $p(t)$ 的积分要从 $\textcolor{springgreen}{\boldsymbol{ -\infty }}$ 开始呢?
继续阅读“连续型随机变量的分布函数为什么要从 $-\infty$ 大开始积分?”在本文中,「荒原之梦考研数学」将借助几何中“两点之间确定一条直线”的思想,帮助同学们理解什么时候可以使用特例法求解题目答案。
继续阅读““两点确定一条直线”的思想在特例法中的应用”全概率公公式的定义如下:
若事件 $A_{1}$, $A_{2}$, $\cdots$, $A_{n}$ 两两互斥,且 $\sum_{i=1}^{n} A_{i}$ $=$ $\Omega$, $P(A_{i})$ $>$ $0$, 其中 $i$ $=$ $1$, $2$, $\cdots$, $n$, 则对于任一事件 $B$, 有:
$$
P(B) = \sum_{i=1}^{n} P(A_{i}) P(B|A_{i})
$$
在本文中,「荒原之梦考研数学」就用 图 示 的方式,让同学们能够直观地理解全概率公式。
继续阅读“图解全概率公式”已知事件 $A$ 和 $B$ 满足:
$$
A B = \bar { A } \bar { B }
$$
则下列关于 $A \cup B$ 的说法中,正确的是哪一个?
[A]. $A \cup B$ $=$ $\Omega$
[B]. $A \cup B$ $=$ $\varnothing$
[C]. $A \cup B$ $=$ $A$
[D]. $A \cup B$ $=$ $B$
难度评级:
继续阅读“用画图的方式求解概率论题目很方便,但难点在于如何画和怎么理解”事件 $A$ 与其对立事件 $\bar{A}$ 可能相等吗?也就是说,下面这个式子成立吗:
$$
A = \bar{A}
$$
接下来,「荒原之梦考研数学」就给同学们阐释清楚上面这个问题。
继续阅读“事件与其对立事件可能相等吗?”在本文中,「荒原之梦考研数学」将通过四个例子和相关图示讲明白以下两个概率论中的定理:
根据概率论中的摩根律,我们知道,对于事件 $A$ 和事件 $B$, 有:
$$
\begin{aligned}
\overline{A \cup B} & = \bar{A} \cap \bar{B} \\
\overline{A \cap B} & = \bar{A} \cup \bar{B}
\end{aligned}
$$
有关摩根律的推导和理解有很多种方式方法,在本文中,「荒原之梦考研数学」将对韦恩图(Venn)进行改进,从而更好的解释摩根律。
难度评级:
继续阅读“用改进的韦恩(Venn)图理解概率论中的“摩根律””在考研数学真题,以及一些参考资料中,出于表述的严谨性和习惯,我们常常会遇到一些数学符号。准确的理解和掌握这些数学符号的含义,对于打牢基础,在考场上不会“因小失大”而言非常重要。
在本文中,荒原之梦考研数学将把考研数学中常见的一些数学符号汇总在这里,希望帮助大家更好的掌握这部分内容。
继续阅读“考研数学中常见数学符号的含义”$A$ 与 $B$ 为互斥(互不相容)事件 $\Leftrightarrow$ $A$ $\cap$ $B$ $=$ $\varnothing$ $\Leftrightarrow$ $A$ 与 $B$ 不能同时发生。
$A$ 与 $B$ 为对立(互逆)事件 $\Leftrightarrow$ $A$ $\cap$ $B$ $=$ $\varnothing$ 且 $A$ $\cup$ $B$ $=$ $\Omega$ $\Leftrightarrow$ $A$ 与 $B$ 在一次试验中必然发生且只能发生一个。
若 $P(A)$ $=$ $0$ 或 $P(A)$ $=$1$, 则 $A$ 与任何事件都相互独立。
若 $A$ 与 $B$ 相互独立,则 $P(AB)$ $=$ $P(A)P(B)$.
若 $A$ 与 $B$ 互斥(或互逆)且均为非零概率事件,则 $A$ 与 $B$ 不相互独立。
若 $A$ 与 $B$ 相互独立且均为非零概率事件,则 $A$ 与 $B$ 不互斥。
$A$ 与 $B$ 互斥(互不相容)关系如图 1 所示:

$A$ 与 $B$ 对立(互逆)关系如图 2 所示:

$A$ 与 $B$ 相互独立关系如图 3 所示:

$A$ 与 $B$ 互逆,互斥与独立之间的推导关系如图 4 所示:

EOF