一、前言 
切比雪夫不等式(又称:切贝雪夫不等式,英文名称:chebyshev’s theorem)在概率论与数理统计中这门课程中是一个非常重要的概念,该不等式在大数定理中也发挥着重要的作用。
在本文中,「荒原之梦考研数学」就通过直观的文字与图形化解释,帮助同学们更好地理解切比雪夫不等式。
继续阅读“切比雪夫不等式的含义及其可视化”切比雪夫不等式(又称:切贝雪夫不等式,英文名称:chebyshev’s theorem)在概率论与数理统计中这门课程中是一个非常重要的概念,该不等式在大数定理中也发挥着重要的作用。
在本文中,「荒原之梦考研数学」就通过直观的文字与图形化解释,帮助同学们更好地理解切比雪夫不等式。
继续阅读“切比雪夫不等式的含义及其可视化”在本文中,「荒原之梦考研数学」将通过对二维连续型随机变量几何意义的解释,让同学们能够建立对二维连续型随机变量更直观的理解。
我们知道,连续型随机变量
其中,
但是,为什么对
在本文中,「荒原之梦考研数学」将借助几何中“两点之间确定一条直线”的思想,帮助同学们理解什么时候可以使用特例法求解题目答案。
继续阅读““两点确定一条直线”的思想在特例法中的应用”全概率公公式的定义如下:
若事件
在本文中,「荒原之梦考研数学」就用 图 示 的方式,让同学们能够直观地理解全概率公式。
继续阅读“图解全概率公式”在本文中,「荒原之梦考研数学」将通过四个例子和相关图示讲明白以下两个概率论中的定理:
根据概率论中的摩根律,我们知道,对于事件
有关摩根律的推导和理解有很多种方式方法,在本文中,「荒原之梦考研数学」将对韦恩图(Venn)进行改进,从而更好的解释摩根律。
难度评级:
继续阅读“用改进的韦恩(Venn)图理解概率论中的“摩根律””在考研数学真题,以及一些参考资料中,出于表述的严谨性和习惯,我们常常会遇到一些数学符号。准确的理解和掌握这些数学符号的含义,对于打牢基础,在考场上不会“因小失大”而言非常重要。
在本文中,荒原之梦考研数学将把考研数学中常见的一些数学符号汇总在这里,希望帮助大家更好的掌握这部分内容。
继续阅读“考研数学中常见数学符号的含义”若
若
若
若
EOF
先来看一下互斥事件与对立事件的定义。
互斥事件的定义:
互斥事件(互不相容):当
(也可以写成 )时,称事件 与 事件 互不相容或互斥,事件 , 不能同时发生.
对立事件的定义:
对立事件(逆事件):若
且 , 则称 与 互为逆事件,也称互为对立事件. 的对立事件记为 .
总的来说,互斥事件是一个比对立事件更广泛一些的概念,这一点从互斥事件与对立事件各自的定义上也可以看出来。互斥事件只限制了
我们可以将互斥事件和对立事件理解成包含和被包含的关系:
对立必然互斥,互斥不一定对立。
如果要用普通语言表述互斥事件与对立事件,那就是:
对立是要么一定且只能是我,要么就一定且只能是你;
互斥是如果不是我,则可能是你,也可能另外的其他人。
为了进一步辅助理解,我画了两张图,大致表示出了对立事件和互斥事件,如下。
图 1 表示
图 2 表示
注:本文中的 “
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
以独特的视角解析线性代数,让繁复的知识变得直观明了。
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
EOF