用画图的方式求解概率论题目很方便,但难点在于如何画和怎么理解

一、题目题目 - 荒原之梦

难度评级:

继续阅读“用画图的方式求解概率论题目很方便,但难点在于如何画和怎么理解”

交集取决于“小”的,并集取决于“大”的

一、前言 前言 - 荒原之梦

在本文中,「荒原之梦考研数学」将通过四个例子和相关图示讲明白以下两个概率论中的定理:

  1. 集合“交 $\cap$”运算的结果取决于较小的集合;
  2. 集合“并 $\cup$”运算的结果取决于较大的集合。
继续阅读“交集取决于“小”的,并集取决于“大”的”

用改进的韦恩(Venn)图理解概率论中的“摩根律”

一、前言 前言 - 荒原之梦

根据概率论中的摩根律,我们知道,对于事件 $A$ 和事件 $B$, 有:

$$
\begin{aligned}
\overline{A \cup B} & = \bar{A} \cap \bar{B} \\
\overline{A \cap B} & = \bar{A} \cup \bar{B}
\end{aligned}
$$

有关摩根律的推导和理解有很多种方式方法,在本文中,「荒原之梦考研数学」将对韦恩图(Venn)进行改进,从而更好的解释摩根律。

难度评级:

继续阅读“用改进的韦恩(Venn)图理解概率论中的“摩根律””

考研数学中常见数学符号的含义

一、前言 前言 - 荒原之梦

在考研数学真题,以及一些参考资料中,出于表述的严谨性和习惯,我们常常会遇到一些数学符号。准确的理解和掌握这些数学符号的含义,对于打牢基础,在考场上不会“因小失大”而言非常重要。

在本文中,荒原之梦考研数学将把考研数学中常见的一些数学符号汇总在这里,希望帮助大家更好的掌握这部分内容。

继续阅读“考研数学中常见数学符号的含义”

概率论:理解事件的互斥,对立与独立

一、性质

$A$ 与 $B$ 为互斥(互不相容)事件 $\Leftrightarrow$ $A$ $\cap$ $B$ $=$ $\varnothing$ $\Leftrightarrow$ $A$ 与 $B$ 不能同时发生。

$A$ 与 $B$ 为对立(互逆)事件 $\Leftrightarrow$ $A$ $\cap$ $B$ $=$ $\varnothing$ 且 $A$ $\cup$ $B$ $=$ $\Omega$ $\Leftrightarrow$ $A$ 与 $B$ 在一次试验中必然发生且只能发生一个。

若 $P(A)$ $=$ $0$ 或 $P(A)$ $=$1$, 则 $A$ 与任何事件都相互独立。

若 $A$ 与 $B$ 相互独立,则 $P(AB)$ $=$ $P(A)P(B)$.

若 $A$ 与 $B$ 互斥(或互逆)且均为非零概率事件,则 $A$ 与 $B$ 不相互独立。

若 $A$ 与 $B$ 相互独立且均为非零概率事件,则 $A$ 与 $B$ 不互斥。

二、图解

$A$ 与 $B$ 互斥(互不相容)关系如图 1 所示:

图 1

$A$ 与 $B$ 对立(互逆)关系如图 2 所示:

图 2

$A$ 与 $B$ 相互独立关系如图 3 所示:

图 3

$A$ 与 $B$ 互逆,互斥与独立之间的推导关系如图 4 所示:

图 4

EOF

理解互斥事件与对立事件(图文)

先来看一下互斥事件与对立事件的定义。

互斥事件的定义:

互斥事件(互不相容):当 $AB$ $=$ $\varnothing$ (也可以写成 $A$ $\cap$ $B$ $=$ $\varnothing$)时,称事件 $A$ 与 事件$B$ 互不相容或互斥,事件 $A$, $B$ 不能同时发生.

对立事件的定义:

对立事件(逆事件):若 $A$ $\cup$ $B$ $=$ $\Omega$ 且 $A$ $\cap$ $B$ $=$ $\varnothing$, 则称 $A$ 与 $B$ 互为逆事件,也称互为对立事件. $A$ 的对立事件记为 $\bar{A}$.

总的来说,互斥事件是一个比对立事件更广泛一些的概念,这一点从互斥事件与对立事件各自的定义上也可以看出来。互斥事件只限制了 $A$ $\cap$ $B$ $=$ $\varnothing$, 而对立事件不仅限制了 $A$ $\cap$ $B$ $=$ $\varnothing$, 还限制了 $A$ $\cup$ $B$ $=$ $\Omega$. 很显然,互斥事件的限制范围更宽松,因此能表示的范围也更大。

我们可以将互斥事件和对立事件理解成包含和被包含的关系:

对立必然互斥,互斥不一定对立。

如果要用普通语言表述互斥事件与对立事件,那就是:

对立是要么一定且只能是我,要么就一定且只能是你;

互斥是如果不是我,则可能是你,也可能另外的其他人。

为了进一步辅助理解,我画了两张图,大致表示出了对立事件和互斥事件,如下。

图 1 表示 $A$ 与 $B$ 为对立事件时其相互之间的关系:

图 1. 对立事件示意图

图 2 表示 $A$ 与 $B$ 为互斥事件时其 相互之间的关系:

图 2. 互斥事件示意图

注:本文中的 “$\Omega$” 表示当前语境下的样本空间,即当前语境下所有样本点组成的集合。


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress