一、题目
已知 $f(x)$ 可导, $f(0)=0$, $f^{\prime}(0)=2$, $F(x)$ $=$ $\int_{0}^{x} t^{2} f\left(x^{3}-t^{3}\right) \mathrm{d} t$, $g(x)=\frac{x^{7}}{5}$ $+$ $\frac{x^{6}}{6}$, 则 当 $x \rightarrow 0$ 时, $F(x)$ 是 $g(x)$ 的等价无穷小吗?
难度评级:
继续阅读“变限积分被积函数中包含的变量不好处理?先整体代换试试!”