一、前言
在「荒原之梦」的文章《通过分类讨论分析函数乘积平移的性质》中,我们使用传统数学中符号推理的方式,研究了下面这个问题:
已知,函数 $\mathrm{Z}_{1}(x) = f(x) \cdot g(x)$, 接着,我们将函数 $g(x)$ 向左平移 $k$ 个单位,得到函数 $g(x+k)$, 那么,当函数 $f(x)$ 满足什么条件的时候,函数 $\mathrm{Z}_{2}(x) = f(x) \cdot g(x+k)$ 实际上可以看作是由函数 $\mathrm{Z}_{1}(x)$ 平移得到的呢?并且函数 $\mathrm{Z}_{1}(x)$ 向哪个方向平移了多少个单位得到了函数 $\mathrm{Z}_{2}(x)$ ?
在本文中,「荒原之梦」将对上面的问题进一步深入探讨,并用「荒原之梦」独创的图形推理的方式,研究以下三组函数的平移变换性质:
$$
\begin{aligned}
\mathbf{No.1} & \begin{cases}
\mathrm{Z}_{1}(x) = f(x) \cdot g(x) \\
\mathrm{Z}_{2}(x) = f(x) \cdot g(x + k)
\end{cases} \\ \\
\mathbf{No.2} & \begin{cases}
\mathrm{Z}_{3}(x) = f(x) \cdot g(x) \cdot h(x) \\
\mathrm{Z}_{4}(x) = f(x) \cdot g(x+k) \cdot h(x+l)
\end{cases} \\ \\
\mathbf{No.3} & \begin{cases}
\mathrm{Z}_{5}(x) = f(x) \cdot g(x) \cdot h(x) \\
\mathrm{Z}_{6}(x) = f(x) \cdot g(x+k) \cdot h(x-m)
\end{cases}
\end{aligned}
$$
其中,$k > 0$, $l > 0$, $m > 0$.
在本文中,我们将基于「荒原之梦」定义的“矢量乘法模型”这一工具,通过绘图的方式,直观地说明,当我们把函数 $\mathrm{Z}_{2}(x)$ 看作是由函数 $\mathrm{Z}_{1}(x)$ 沿着坐标系的 $X$ 轴左右平移得到的时候,函数 $f(x)$, $g(x)$ 和 $h(x)$ 需要具有什么样的性质,以及函数 $\mathrm{Z}_{i}(x)$(其中,$i$ $=$ $1,2,3,4,5,6$)左右平移的距离与函数 $g(x)$ 和 $h(x)$ 的左右平移距离之间具有什么样的关系。
继续阅读“基于矢量乘法模型分析函数乘积平移的性质”