一、前言
在高等数学中,我们一般会用 “$\{ x_{n} \}$” 或者 “$\{ y_{n} \}$” 表示数列,数列和函数有很多异同点,要想深入地理解数列,首先就要明白什么是数列,以及数列的敛散性。
在本文中,「荒原之梦考研数学」将使用通俗易懂的解释,为同学们讲明白数列的那些事。
继续阅读“峰式 (FENG Type) 图形法:直观地理解数列及数列的基本性质”在高等数学中,我们一般会用 “$\{ x_{n} \}$” 或者 “$\{ y_{n} \}$” 表示数列,数列和函数有很多异同点,要想深入地理解数列,首先就要明白什么是数列,以及数列的敛散性。
在本文中,「荒原之梦考研数学」将使用通俗易懂的解释,为同学们讲明白数列的那些事。
继续阅读“峰式 (FENG Type) 图形法:直观地理解数列及数列的基本性质”已知 $\xi_{1}$, $\xi_{2}$, $\cdots$, $\xi_{8}$ 是来自标准正态分布的总体 $\xi \sim N(0, 1)$ 的容量为 $8$ 的简单随机样本,而 $\eta$ $=$ $\left( \xi_{1} + \xi_{2} + \xi_{3} + \xi_{4} \right)^{2}$ $+$ $\left( \xi_{5} + \xi_{6} + \xi_{7} + \xi_{8} \right)^{2}$.
试求常数 $k$, 使得随机变量 $k \eta$ 服从 $\chi^{2}$ 分布,同时指出 $\chi^{2}$ 分布的自由度。
难度评级:
继续阅读“构成卡方分布的正态分布必须是标准正态分布且系数为 1”在「荒原之梦考研数学」的文章《取大头:分子或分母中的加减法所连接的部分可以使用“取大头”算法》中,我们主要讨论了当 $x \rightarrow +\infty$, 且 $x^{n}$ 中的 $n$ 为正整数的时候,极限式子“取大头去小头”的定理,在本文中,我们将对极限式子的“取大头去小头”的定理进行扩展,助力同学们提升解题速度。
继续阅读“扩展的极限“抓大去小”定理”$$
\lim_{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k}{(k+1)!} = ?
$$
难度评级:
继续阅读“相邻展开式可抵消一般发生在含有递进关系的求和中”一般情况下,我们判断方程实数根的存在性或者函数实数解的存在性(也就是函数图像与 $X$ 轴是否存在交点,以及交点的个数)通常使用的方法是求导法,也就是通过求导判断函数的单调性,再利用函数的极值,判断函数图像与 $X$ 轴是否存在交点。
在本文中,「荒原之梦考研数学」将通过原创的“峰式”变限积分法,来判断方程实数根(或函数实数解)的存在性,为同学们在求解该类型题目时提供另一种解题思路。
继续阅读““峰式”变限积分法:判断方程实数根(或函数实数解)存在性的另一种方法”下面的极限中,结论正确的是哪个?
»A« $\lim_{ x \rightarrow 0 } \left( 1 + \frac{1}{x} \right)^{x}$ $=$ $\mathrm{e}$
»B« $\lim_{ x \rightarrow 0^{+} } \left( 1 + \frac{1}{x} \right)^{x}$ $=$ $1$
»C« $\lim_{ x \rightarrow \infty } \left( 1 + \frac{1}{x} \right)^{-x}$ $=$ $\mathrm{e}$
»D« $\lim_{ x \rightarrow \infty } \left( 1 – \frac{1}{x} \right)^{x}$ $=$ $-\mathrm{e}$
难度评级:
继续阅读“这个极限非常具有“迷惑力”!”在本文中,「荒原之梦考研数学」将通过两种方法证明下面的对数次方公式(也称“对数指係公式”):
$$
\log_{\alpha^{n}} x^{m} = \frac{m}{n} \log_{\alpha} x
$$
在本文中,「荒原之梦考研数学」将给出下面这个对数换底公式(也称“对数基变换公式”)的详细证明:
$$
\textcolor{pink}{ \log_{y} x } = \frac{\log_{\beta} x}{\log_{\beta} y}
$$
在本文中,「荒原之梦考研数学」将使用传统方法和“峰式”画图的方法证明概率论中下面这个公式:
$$
\sum_{i=1}^{n} (\xi_{i} – \bar{\xi}) = \sum_{i=1}^{n} \xi_{i} – n \bar{\xi} = 0
$$
其中,$\bar{\xi}$ 为样本 $\left( \xi_{1}, \xi_{2}, \xi_{3} \cdots, \xi_{n} \right)$ 的均值。
继续阅读“为什么样本值减去样本均值后求和等于零?”在另一篇文章中,「荒原之梦考研数学」通过图解的方式证明了全概率公式,在本文中,「荒原之梦考研数学」将使用传统的证明方法实现对全概率公式的证明:
$$
\begin{aligned}
P \left( A \right) & = \sum_{i=1}^{n} P \left( B_{i} \right) P \left( A \mid B_{i} \right) \\ \\
P \left( B \right) & = \sum_{i=1}^{n} P \left( A_{i} \right) P \left( B \mid A_{i} \right)
\end{aligned}
$$
在本文中,「荒原之梦考研数学」将通过完善的逻辑推理,分别证明以下两个对数的“和”与“差”公式:
$$
\begin{aligned}
\log_{\alpha} M N & = \log_{\alpha} M + \log_{\alpha} N \\
\log_{\alpha} \frac{M}{N} & = \log_{\alpha} M – \log_{\alpha} N
\end{aligned}
$$
意大利物理学家、数学家和天文学家伽利略曾经说过:“给我空间、时间及对数,我就可以创造一个宇宙。”,同时,在我们学习数学或者使用数学的时候,也常常会遇到“对数”。
但是,取对数到底有什么用呢?在本文中,「荒原之梦考研数学」将为同学们揭开对数的“神秘”面纱。
对数的其中一个作用就是可以“压缩”数值,或者说,对数可以反应较大数字的“量级”。
例如,对于数字 $123456$ 和 $654321$ 是两个相差特别大的数字,如果要比较这样的数字的大小,或者将其绘制在坐标图上,都不是很好表示,但如果我们对其取对数,就可以在减少这样的差异,并且不改变原有的大小关系(因为对数函数是一个单调递增的函数,可以保留原有的相对大小关系):
$$
\log_{10}^{123456} \simeq 5.0915
$$
$$
\log_{10}^{654321} \simeq 5.8158
$$
在上面做数值压缩的过程中,我们使用的是底数为 $10$ 的“常用对数”,因为常用的数字就是十进制的,用底数为 $10$ 的对数可以很方便的显示出原有数字的量级(一个“量级”就是十进制的一个“位”,即千位、百位和十位等),例如:
$$
\log_{10}^{6 \times 10^{\textcolor{springgreen}{8}}} \simeq \textcolor{springgreen}{8}.7782
$$
$$
\log_{10}^{9 \times 10^{\textcolor{springgreen}{8}}} \simeq \textcolor{springgreen}{8}.9542
$$
$$
\log_{10}^{2 \times 10^{\textcolor{orangered}{9}}} \simeq \textcolor{orangered}{9}.3010
$$
当然,用其他底数也可以大致反映出不同十进制数字的相对大小,但不能反映出十进制数字原本的量级:
$$
\log_{\mathrm{e}}^{6 \times 10^{\textcolor{pink}{8}}} \simeq \textcolor{tan}{20}.2124
$$
$$
\log_{\mathrm{e}}^{9 \times 10^{\textcolor{pink}{8}}} \simeq \textcolor{tan}{20}.6179
$$
$$
\log_{\mathrm{e}}^{2 \times 10^{\textcolor{pink}{9}}} \simeq \textcolor{tan}{21}.4164
$$
Note
在实际应用中,至少下面的数值或者表示方法都使用了对数:
zhaokaifeng.com
⁕ 里氏地震震级(用于描述地震烈度)
⁕ 分贝(用于音量)
⁕ 奈培(用于电功率)
⁕ 音分、小二度、全音及纯八度等(用于音乐中的相对音高)
⁕ Logit(用于统计学的发生比)
⁕ 巴勒莫撞击危险指数(用于表示近地天体撞击地球的危险几率)
⁕ 对数时间线
⁕ 焦比(用于计算摄影中的曝光量)
⁕ 熵(用于热力学)
⁕ 信息(用于信息论)
⁕ 土壤的颗粒尺寸分布的曲线
⁕ 对数星图(用于表示星体之间的相对位置)
⁕ 能量密度(用于铀和化石燃料能量密度的比较)
⁕ pH 值(用于表示酸性)
⁕ 视星(用于表示恒星亮度)
⁕ 克伦宾尺度(用于地质学中表示粒径)
⁕ 吸光度(用于描述物体的透光性能)
此外,取对数的另一个作用就是将非线性的式子转换为线性的式子。
例如,当 $Z$ 为变量,$n$ 为常数的时候,”$Z^{n}$” 不是一个线性表达式,但是,对其取对数之后,就可以转变为线性表达式 “$n \log Z$”:
$$
\log Z^{n} = n \log Z
$$
同样的,当 $x$ 和 $y$ 为变量的时候,”$xy$” 不是一个线性表达式,但是对其取对数之后,就可以转变为线性表达式 “$\log x$ $+$ $\log y$”:
$$
\log (xy) = \log x + \log y
$$
线性表达式在计算上更加简单,在人工智能领域有着广泛且深入的应用。
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
以独特的视角解析线性代数,让繁复的知识变得直观明了。
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!
当矩阵的乘法和转置运算结合的时候,有如下运算律:
$$
\textcolor{yellow}{
(\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
}
$$
从上面这条定理出发,我们可以验证任意多个矩阵相乘时的转置运算律。例如,若令矩阵 $\boldsymbol{B}$ $=$ $\boldsymbol{C} \boldsymbol{D}$, 则:
$$
\begin{aligned}
& \ (\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top} \\
\Rightarrow & \ [\boldsymbol{A} (\boldsymbol{C} \boldsymbol{D})]^{\top} = (\boldsymbol{C} \boldsymbol{D})^{\top} \boldsymbol{A}^{\top} \\
\Rightarrow & \ [\boldsymbol{A} \boldsymbol{C} \boldsymbol{D}]^{\top} = \boldsymbol{D}^{\top} \boldsymbol{C}^{\top} \boldsymbol{A}^{\top} \\
\end{aligned}
$$
在本文中,「荒原之梦考研数学」将使用原创的“峰式画线法”证明矩阵乘法的转置运算律。
继续阅读“用“峰式画线法”证明矩阵乘法的转置运算律”Note
zhaokaifeng.com
在本文中,「荒原之梦考研数学」将使用一般具体的矩阵证明下面的定理(矩阵乘法的转置运算律):
$$
\textcolor{springgreen}{
(\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
}
$$
在本文中,「荒原之梦考研数学」将使用完全抽象的矩阵证明下面的定理(矩阵乘法的转置运算律):
$$
\textcolor{springgreen}{
(\boldsymbol{A} \boldsymbol{B})^{\top} = \boldsymbol{B}^{\top} \boldsymbol{A}^{\top}
}
$$