概率统计中用于表示“方差”的那些符号

一、前言 前言 - 荒原之梦

方差可以用来描述随机变量的离散程度,是数理统计中一个常用的统计特征。

但是,在不同的数学学习资料中,表示方差所用的符号可能存在区别,这对我们的学习产生了一定的困扰。

因此,在本文中,「荒原之梦考研数学」就给同学们汇总整理了不同学习资料中常用的方差表示方法,以方便同学们的学习。

继续阅读“概率统计中用于表示“方差”的那些符号”

一般的一维正态分布到标准正态分布的转换公式与例题详解

一、前言 前言 - 荒原之梦

标准正态分布具有很多独特的性质,因此,一般的普通正态分布到标准正态分布的转换,也是概率统计这门学科经常考察的一个知识点。

在本文中,我们只考虑一维情况下的一般正态分布(普通正态分布)到标准正态分布的转换公式以及例题。

继续阅读“一般的一维正态分布到标准正态分布的转换公式与例题详解”

正态分布概率密度函数图像的特殊点

一、前言 前言 - 荒原之梦

在手绘正态分布的概率密度函数的时候,我们需要知道概率密度函数图象的大致形状和一些特殊点的位置,这也可以帮助我们理解正态分布相关概念以及辅助解题。

所以,在本文中,「荒原之梦考研数学」就给同学们绘制了一个清晰的正态分布概率密度函数图象,并标注出了一些特殊的坐标点。

继续阅读“正态分布概率密度函数图像的特殊点”

伽马函数(欧拉第二积分/Gamma Function)详解

一、前言 前言 - 荒原之梦

伽马函数(欧拉第二积分/Gamma Function)详解 | 荒原之梦考研数学 | 图 01. 实数轴上的一些伽马函数的图象。
图 01. 实数轴上的一些伽马函数的图象。

在本文中,「荒原之梦考研数学」将为同学们详细讲解考研高等数学以及概率论和数理统计课程中常用的伽马函数。

继续阅读“伽马函数(欧拉第二积分/Gamma Function)详解”

什么是点估计?点估计的作用是什么?

一、前言 前言 - 荒原之梦

什么是点估计?点估计的作用是什么?| 荒原之梦考研数学 | 图 01.
图 01. 点估计定义的可视化结构关系图。

在本文中,「荒原之梦考研数学」将通过图示的方式,用直观的表述给同学们讲明白概率论与数理统计中的“点估计”这一概念。

继续阅读“什么是点估计?点估计的作用是什么?”

高斯函数、高斯积分与正态分布之间的关系

一、前言 前言 - 荒原之梦

荒原之梦考研数学 | 高斯函数、高斯积分与正态分布之间的关系 | 图 01.
图 01. 图中描绘了一种二维高斯函数 $g(x,y)$ $=$ $\mathrm{e}^{- (x^{2} + y^{2})}$, 以及其在三维坐标系 $XOZ$ 平面上投影所得的一种一维高斯函数 $g(x)$ $=$ $\mathrm{e}^{-x^{2}}$ 和在三维坐标系 $YOZ$ 平面上投影所得的一种一维高斯函数 $g(y)$ $=$ $\mathrm{e}^{-y^{2}}$.

高斯函数、高斯积分和正态分布之间具有密切的关系,搞明白这些关系,有助于我们对题目和解题方式有更清晰的理解。

在本文中,「荒原之梦考研数学」将为同学们讲明白这些概念之间的关系。

继续阅读“高斯函数、高斯积分与正态分布之间的关系”

概率论中的 $\begin{pmatrix} n \\ k \end{pmatrix}$ 表示什么意思?

一、前言 前言 - 荒原之梦

在一些概率论和数理统计的题目或者学习资料中,我们可能会看到如下这样的写法:

$$
\begin{pmatrix}
n \\
k
\end{pmatrix}
$$

那么,上面这个式子是什么意思呢?在本文中,「荒原之梦考研数学」就给同学们详细解答一下。

继续阅读“概率论中的 $\begin{pmatrix} n \\ k \end{pmatrix}$ 表示什么意思?”

有限总体的大量无放回抽样不是简单随机抽样

一、前言 前言 - 荒原之梦

“抽样”是概率论中的一个关键概念,一般情况下,“抽象”特指“简单随机抽样”。

那么,什么是“简单随机抽样”,什么不是“简单随机抽样”呢?

在本文中,「荒原之梦考研数学」就给同学们讲解清楚这一问题。

继续阅读“有限总体的大量无放回抽样不是简单随机抽样”

切比雪夫不等式的含义及其可视化

一、前言 前言 - 荒原之梦

切比雪夫不等式(又称:切贝雪夫不等式,英文名称:chebyshev’s theorem)在概率论与数理统计中这门课程中是一个非常重要的概念,该不等式在大数定理中也发挥着重要的作用。

在本文中,「荒原之梦考研数学」就通过直观的文字与图形化解释,帮助同学们更好地理解切比雪夫不等式。

继续阅读“切比雪夫不等式的含义及其可视化”

二维连续型随机变量的几何意义是什么?

一、前言 前言 - 荒原之梦

在本文中,「荒原之梦考研数学」将通过对二维连续型随机变量几何意义的解释,让同学们能够建立对二维连续型随机变量更直观的理解。

二维连续型随机变量的几何意义是什么?| 荒原之梦考研数学 | 图 01.
图 01 二维高斯分布的三维示意图.
继续阅读“二维连续型随机变量的几何意义是什么?”

连续型随机变量的分布函数为什么要从 $-\infty$ 大开始积分?

一、前言 前言 - 荒原之梦

我们知道,连续型随机变量 $\xi$ 的分布函数 $F$ 能够表示为非负可积的概率密度函数(分布密度函数)$p$ 在区间 $(- \infty, x)$ 上的积分,即:

$$
F(x) = \int_{\textcolor{springgreen}{\boldsymbol{ – \infty }}}^{x} p(t) \mathrm{~d} t
$$

其中,$- \infty < x < + \infty$.

但是,为什么对 $p(t)$ 的积分要从 $\textcolor{springgreen}{\boldsymbol{ -\infty }}$ 开始呢?

继续阅读“连续型随机变量的分布函数为什么要从 $-\infty$ 大开始积分?”

“两点确定一条直线”的思想在特例法中的应用

一、前言 前言 - 荒原之梦

“两点确定一条直线”的思想在特例法中的应用 | 荒原之梦考研数学
图 01.

在本文中,「荒原之梦考研数学」将借助几何中“两点之间确定一条直线”的思想,帮助同学们理解什么时候可以使用特例法求解题目答案。

继续阅读““两点确定一条直线”的思想在特例法中的应用”

图解全概率公式

一、前言 前言 - 荒原之梦

全概率公公式的定义如下:

在本文中,「荒原之梦考研数学」就用 的方式,让同学们能够直观地理解全概率公式。

继续阅读“图解全概率公式”

用画图的方式求解概率论题目很方便,但难点在于如何画和怎么理解

一、题目题目 - 荒原之梦

难度评级:

继续阅读“用画图的方式求解概率论题目很方便,但难点在于如何画和怎么理解”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress