一、题目
已知 $a _{ i }$ $\neq$ $0$ ($i$ $=$ $1$, $2$, $3$, $4$), 则:
$$
|V| =
\begin{vmatrix}
& a_{1}^{3} & a_{1}^{2}b_{1} & a_{1}b_{1}^{2} & b_{1}^{3} & \\ \\
& a_{2}^{3} & a_{2}^{2}b_{2} & a_{2}b_{2}^{2} & b_{2}^{3} & \\ \\
& a_{3}^{3} & a_{3}^{2}b_{3} & a_{3}b_{3}^{2} & b_{3}^{3} & \\ \\
& a_{4}^{3} & a_{4}^{2}b_{4} & a_{4}b_{4}^{2} & b_{4}^{3} &
\end{vmatrix} = ?
$$
难度评级:
继续阅读“行列式“剥洋葱”:对于行或者列之间存在普遍规律的行列式可以尝试先提取其“公共部分””




