「荒原之梦考研数学」文章

[高等数学]解析一道关于函数极限的概念考察题(001)

一、题目

下列命题中正确的是()

( A ) 若 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $\geqslant$ $\lim_{x \rightarrow x_{0}}$ $g(x)$, 则 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时,$f(x)$ $\geqslant$ $g(x)$.

( B ) 若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时,$f(x)$ $>$ $g(x)$, 且 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A_{0}$, $\lim_{x \rightarrow x_{0}}$ $g(x)$ $=$ $B_{0}$, 则 $A_{0}$ $>$ $B_{0}$.

( C ) 若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时,$f(x)$ $>$ $g(x)$, 则 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $\geqslant$ $\lim_{x \rightarrow x_{0}}$ $g(x)$.

( D ) 若 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $>$ $\lim_{x \rightarrow x_{0}}$ $g(x)$, 则 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时,$f(x)$ $>$ $g(x)$.

二、解析

概念考察题是考研数学中一类比较难的题,这类题的难点在于除了紧抠概念之外,解答者没有多少可以自由发挥的空间。而且,概念考察题考察的都是概念的细微之处,一不留神就可能审错题。

从本题的四个选项可以看出,本题考查的着重点在函数极限这一部分。更细致的来看,本题考查了函数极限的定义中当 $x$ $\rightarrow$ $x_{0}$ 时的极限的定义,如下:

已知 $\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A$

任给 $\varepsilon$ $>$ $0$, 存在正数 $\delta$, 当 $0$ $<$ $(x$ $-$ $x_{0})$ $<$ $\delta$ 时,就有 $|f(x)-A|$ $<$ $\varepsilon$.

注:上面这个定义说的通俗一点就是,当 $x$ 与 $x_{0}$ 足够接近的时候,$f(x)$ 与 $f(x)$ 的极限 $A$ 也足够接近。

本题还考察了函数极限的性质中的“保号性”,如下:

设 $\lim$ $f(x)$ $=$ $A$ $>$ $0$, 则在极限管辖的范围内,$f(x)$ $>$ $0$ $($ $f(x)$ $>$ $\frac{A}{2}$ $)$.

反之,$f(x)$ $>$ $0$ 且 $\lim$ $f(x)$ $=$ $A$ $\Rightarrow$ $A$ $\geqslant$ $0$.

注:当 $x$ $\rightarrow$ $x_{0}$ 时,“极限管辖的范围”指的就是 $x_{0}$ 的去心邻域;当 $x$ $\rightarrow$ $\infty$ 时,“极限管辖的范围”指的就是无穷远处。

对于函数极限的性质中的保号性,我们需要明确以下几点:

  • 解答保号性问题的大前提是“涉及到的函数的极限均存在”,这也是解决所有涉及极限的问题的大前提:要研究和利用极限,则极限必须存在;
  • 保号性都是局部保号性,即只有在极限管辖的范围内才存在保号性;
  • 由极限大于 $0$ 可以推出函数大于 $0$, 不能推出函数等于 $0$ 或者函数小于 $0$. 由函数大于 $0$ 可以推出极限大于 $0$ 或者极限等于 $0$, 而且在不确定极限究竟是只大于 $0$ 还是只小于 $0$ 的情况下,要写成极限大于等于 $0$ 的形式。

以下是对本题中每一个选项的分析。

A 选项

该选项给出了:

$\lim_{x \rightarrow x_{0}}$ $f(x)$ $\geqslant$ $\lim_{x \rightarrow x_{0}}$ $g(x)$.

这说明 $f(x)$ 和 $g(x)$ 的极限都存在(满足了研究极限问题的大前提,条件可用,可以继续接下来的思考步骤)且 $f(x)$ 的极限大于等于 $f(x)$ 的极限。

于是,我们有:

$\lim_{x \rightarrow x_{0}}$ $($ $f(x)$ $-$ $g(x)$ $)$ $\geqslant$ $0$.

接下来选项给出了:

若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时

这说明我们是要在“函数极限的管辖范围内”讨论这个选项的说法,具备使用保号性的前提,条件可用,可以继续接下来的思考步骤。

该选项接下来指出,由上面的条件可以推出 $f(x)$ $\geqslant$ $g(x)$.

这个结论是不对的。原因如下:

若函数 $f(x)$ 的极限 $A$ $>$ $0$, 则可以推出函数 $f(x)$ $>$ $0$;

若函数 $f(x)$ 的极限 $A$ $<$ $0$, 则可以推出函数 $f(x)$ $<$ $0$;

若函数 $f(x)$ 的极限 $A=0$, 则不能确定函数 $f(x)$ 是大于 $0$, 小于 $0$ 还是等于 $0$. 原因是,如果 $A$ $=$ $0$ 我们不知道函数 $f(x)$ 是在大于 $0$ 的方向上趋近于极限 $A$, 还是在小于 $0$ 的方向上趋近于极限 $A$, 抑或 $f(x)$ $=$ $0$.

如图 1 所示,当函数的极限等于 $0$ 时,函数可能是大于 $0$ 的:

图 1. $y$ $=$ $\frac{1}{x}$ 的局部图像.

如图 2 所示,当函数的极限等于 $0$ 时,函数也可能是小于 $0$ 的:

图 2. $y$ $=$ $\frac{-1}{x}$ 的局部图像.

第三种情况,当函数的极限等于 $0$ 时,函数可能也是等于 $0$ 的,如图 3 所示:

图 3. $y$ $=$ $0$ 的局部图像.

因此,已知极限 $\lim_{x \rightarrow x_{0}}$ $[$ $f(x)$ $-$ $g(x)$ $]$ $\geqslant$ $0$, 并不能推导出函数 $F(x)$ $=$ $[$ $f(x)$ $-$ $g(x)$ $]$ $\geqslant$ $0$.

综上可知,选项 A 是错误的。

B 选项

题目中给出了如下条件:

若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时

因此,本题符合函数极限保号性的使用条件,条件可用,可以继续接下来的思考步骤。

接着,该选项给出:

$f(x)$ $>$ $g(x)$

于是,当我们令 $F(x)$ $=$ $f(x)$ $-$ $g(x)$ 时,可以得出如下结论:

$F(x)$ $>$ $0$

接着,该选项又给出:

$\lim_{x \rightarrow x_{0}}$ $f(x)$ $=$ $A_{0}$, $\lim_{x \rightarrow x_{0}}$ $g(x)$ $=$ $B_{0}$

这说明函数 $f(x)$ 和函数 $g(x)$ 都是存在极限的,符合我们研究函数极限问题的大前提,条件可用,可以继续接下来的思考步骤。

最后,该选项给出了他的结论:

$A_{0}$ $>$ $B_{0}$

有了这个结论,结合前面的条件,我们可以把该选项改写成如下形式:

已知函数 $F(x)$ 存在极限,且函数 $F(x)$ $>$ $0$, 则 $\lim_{x \rightarrow x_{0}}$ $F(x)$ $>$ $0$.

这个结论显然是错误的,因为已知函数大于 $0$ 的时候,其极限是可能等于 $0$ 的,例如对 A 选项的解析中给出的图 1, 函数 $f(x)$ $=$ $\frac{1}{x}$ 始终是大于 $0$ 的,但是其极限却是等于 $0$ 的。

综上可知,选项 B 是错误的。

C 选项

该选项的错误比较明显,因为选项中没有指明函数 $f(x)$ 和函数 $g(x)$ 的极限存在,缺少了研究极限问题的大前提,那么,接下来的所有说明和结论都是没有根据也没有意义的。不过,如果 C 选项像 B 选项一样指明函数 $f(x)$ 和函数 $g(x)$ 的极限是存在的,那么该选项的表述就是正确的,原因在 B 选项中已经分析过。

综上可知,选项 C 是错误的。

D 选项

该选项首先给出了如下条件:

$\lim_{x \rightarrow x_{0}}$ $f(x)$ $>$ $\lim_{x \rightarrow x_{0}}$ $g(x)$

若我们令 $F(x)$ $=$ $f(x)$ $-$ $g(x)$, 则上面的条件可以改写成:

$\lim_{x \rightarrow x_{0}}$ $F(x)$ $>$ $0$

接着选项给出了:

若 $\exists$ $\varepsilon$ $>$ $0$, 当 $0$ $<$ $|x-x_{0}|$ $<$ $\varepsilon$ 时

这说明我们是要在“函数极限的管辖范围内”讨论这个选项的说法,具备使用保号性的前提,条件可用,可以继续接下来的思考步骤。

接着,该选项给出了它的结论:

$f(x)$ $>$ $g(x)$

根据前面的分析可知,我们可以将此改写成:

$F(x)$ $>$ $0$

我们知道,当一个函数的极限存在且大于 $0$ 的时候,在函数极限的管辖范围内,可以推导出该函数也大于 $0$.

综上可知,选项 D 是正确的。

EOF

无人机被击落后,美国向伊朗发动网络战

根据网络来源的消息,美国政府官员 06 月 22 日表示,美国网络战部队发动了针对伊朗军用计算机的网络攻击,这些计算机被用来控制伊朗的火箭和导弹发射。美国总统 Donald Trump 说,他已经授权了网络安全部队,命令他们对伊朗展开报复性的网络攻击以回应伊朗击落美国的无人侦察机。

伊朗外交部长 Javad Zarif 于 2019 年 06 月 20 日在 Twitter 发文表示,伊朗击落了一架以隐身模式从阿联酋起飞并进入了伊朗领空的美国无人机,之后还找到了该机的残骸:

图 1. 截图来自 Twitter @JZarif

RQ-4 全球鹰无人机:

图 2. By U.S. Air Force photo by Bobbi Zapka – http://www.af.mil/shared/media/photodb/photos/070301-F-9126Z-229.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6711631

Facebook 与其合作者发布全球化加密货币 Libra

根据网络消息,美国当地时间 2019 年 06 月 18 日,由 Facebook 公司参与创建的全球加密货币 Libra 公开发布。与此同时,Facebook 还宣布成立 Libra 协会,该协会是一个独立的组织,其主要职责就是管理货币和标准。该协会将和监管机构一起,维护 Libra 的健康发展。Libra 协会的总部设在瑞士日内瓦。

在上个月刚刚召开的 F8 开发者大会上,Facebook 创始人兼 CEO, Mark Zuckerberg 曾说他希望让转账像发送一张照片一样简单:数字化,迅捷,免费和安全。而在去年(2018 年)的时候,Facebook 曾释放过要加入加密货币浪潮中的意愿。

加密货币 Libra 的目的是“让数十亿人用上货币。到目前为止,全球还有 17 亿成年人没有自己的银行账户,Libra 将使人们以更低的成本,更便捷地开展在线交易,这也可能吸引更多的用户使用社交网络。

Libra 并不是专属于 Facebook 的加密货币,Facebook 只是 Libra 协会的成员之一,这个协会目前还包括 MasterCard, Visa, PayPal, Uber, eBay, Vodafone 和 Mercy Corps 等在内的共计 28 个创始成员。在 2020 年 Libra 正式运行的时候,Facebook 希望 Libra 协会最终能拥有 100 个成员。

关于 Libra 的使用方法,也已经有了明确的规划。未来,在 Facebook 和 Instagram 这两个应用程序上将会有一个按钮,使人们可以像发送一个 GIFs 或者表情一样使用 Libra. 此外,用户也可以在一款独立的应用程序中使用 Libra.

那么,Libra 和现在正在全球范围内使用的,例如比特币这样的加密货币有什么区别呢?Libra 也是基于区块链的数字货币,这一点和其他货币并没有区别。但是和其他加密货币不同的是,Libra 将采用现实世界中的资产(例如中央银行发行的现金或者国债)来赋予其价值。此外,在初期,Libra 的区块链网络将由创始成员维护,但是在未来,Libra 的网络将演变为一个完全开放的系统。

更多关于 Libra 的信息可以参阅《Libra 中文版白皮书》

本文部分内容参考了下列文章:

2009 年研究生入学考试数学一选择题第 1 题解析

一、题目

当 $x$ $\rightarrow$ $0$ 时,$f(x)$ $=$ $x$ $-$ $\sin ax$ 与 $g(x)$ $=$ $x^{2}$ $\ln(1-bx)$ 是等价无穷小,则()

( A ) $a$ $=$ $1$, $b$ $=$ $-$ $\frac{1}{6}$.

( B ) $a$ $=$ $1$, $b$ $=$ $\frac{1}{6}$.

( C ) $a$ $=$ $-1$, $b$ $=$ $-\frac{1}{6}$.

( D ) $a$ $=$ $-1$, $b$ $=$ $\frac{1}{6}$.

二、解析

由于 $f(x)$ 和 $g(x)$ 是等价无穷小,因此,根据“无穷小的比较”中关于等价无穷小的定理:

设 $\lim$ $\alpha(x)$ $=$ $0$, $\lim$ $\beta(x)$ $=$ $0$,
若 $\lim$ $\frac{\alpha (x)}{\beta (x)}$ $=$ $1$, 则 $\alpha(x)$ 与 $\beta(x)$ 是等价无穷小,记为 $\alpha(x)$ $\sim \beta(x)$.

因此,我们有:

$\lim_{x \rightarrow 0}$ $\frac{f(x)}{g(x)}$ $=$ $\lim_{x\rightarrow 0}$ $\frac{x-\sin ax}{x^{2}\ln(1-bx)}$ $=$ $1$.

在“常用的等价无穷小”中,同时和 $\sin x$ 与 $x$ 有关的等价无穷小两个,如下:

$\sin x$ $\sim x$;

$x$ $-$ $\sin x$ $\sim$ $\frac{1}{6}x^{3}$.

同时和 $\ln x$ 与 $x$ 有关的等价无穷小也有两个,如下:

$\ln(1+x)$ $\sim x$;

$x$ $-$ $\ln(1+x)$ $\sim$ $\frac{1}{2}x^{2}$.

那么,我们现在需要考虑的问题就是:需要组合使用哪两个等价无穷小化简原式?

这里选择并确定使用哪两个等价无穷小的依据就是题目中给出的“等价无穷小”。也就是说,在对原式进行化简运算的过程中,必须保证分子分母互为等价无穷小,每一步都要遵守这个原则,最后化简出来的结果中分子分母也必须互为等价无穷小,只有这样才可以和原式划等号。

由前面的计算我们知道,原式的分子是:

$x$ $-$ $\sin ax$

原式的分母是:

$x^{2}$ $\ln(1-bx)$

于是,分子的有效化简形式有以下四种:

$x$ $-$ $\sin ax$ $=$ $x$ $-$ $ax$ (1)

或者:

$x$ $-$ $\sin ax$ $=$ $\sin x$ $-$ $\sin ax$ (2)

或者:

$x$ $-$ $\sin ax$ $=$ $x$ $-$ $[ax$ $-$ $\frac{1}{6}$ $(ax)^{3}]$ $=$ $x$ $-$ $ax$ $+$ $\frac{1}{6}$ $a^{3}$ $x^{3}$ (3)

或者:

$x$ $-$ $\sin ax$ $=$ $\frac{1}{6}x^{3}$ $+$ $\sin x$ $-$ $\sin ax$ (4)

分母的有效化简形式有以下两种:

$x^{2}$ $\ln(1-bx)$ $=$ $x^{2}$ $(-bx)$ $=$ $-bx^{3}$ (5)

或者:

$x^{2}$ $\ln(1-bx)$ $=$ $x^{2}$ $[(-bx)$ $-$ $\frac{1}{2}$ $(-bx)^{2}]$ $=$ $-bx^{3}$ $-$ $\frac{1}{2}$ $b^{2}$ $x^{4}$ (6)

由于要保证每一步计算过程中分子分母都是等价无穷小,因此,我们首先要看看那些式子组合起来可以形成等价无穷小。

(1) 到 (6) 六个式子中变量 $x$ 的次方数情况如下:

(1): 只包含 $1$ 次方;

(2): 只包含 $1$ 次方;

(3): 包含 $1$ 次方和 $3$ 次方;

(4): 包含 $1$ 次方和 $3$ 次方;

(5): 只包含 $3$ 次方;

(6): 包含 $3$ 次方和 $4$ 次方。

由于分母对应的 (5) 和 (6) 两个式子都包含 $3$ 次方,分子对应的 (1) 式和 (2) 式无论如何变化也不会出现 $3$ 次方,无法与分母构成等价无穷小,因此排除。此外,(4) 式有 $\sin x$ 和 $\sin ax$, 而分母中并没有对应的形式,因此 (4) 式被基本排除。

现在就剩下分子对应的 (3) 式和分母对应的 (5) 式和 (6) 式了。由于 (6) 式中含有 $x$ 的 4 次方,而 (3) 式无论如何变化也不会出现 4 次方,因此,正确的化简过程应该在 (3) 式和 (5) 式中产生。

基于以上分析,尝试化简如下:

原式 $=$ $\lim_{x\rightarrow 0}$ $\frac{x-ax+\frac{1}{6}a^{3}x^{3}}{-bx^{3}}$ $=$ $\lim_{x\rightarrow0}$ $\frac{(1-a)x+\frac{1}{6}a^{3}x^{3}}{-bx^{3}}$

分母中没有 $1$ 次方,因此,为了保证“分子分母互为等价无穷小”这个条件始终成立,唯一的办法就是令 $1$ $-$ $a$ $=0$, 接下来,根据 $f(x)$ $\sim$ $g(x)$ 所得的分子分母的对应关系,我们可以得到:

$\frac{1}{6}a^{3}$ $=$ $-b$

两式联立:

$\left\{\begin{matrix}1-a=0,\\ \frac{1}{6}a^{3}=-b.\end{matrix}\right.$

解得:

$\left\{\begin{matrix} a=1,\\ b=-\frac{1}{6}.\end{matrix}\right.$

综上可知,本题的正确选项是:$A$


通过本题,我们可以总结出使用等价无穷小化简原式过程中的以下规律:

  • 注意原式分子分母的无穷小类型(等价,高阶,低阶,同阶,$K$ 阶),计算过程中要以始终保持一致的无穷小类型为所有计算的前提;
  • 使用常见等价无穷小化简的时候一般都是由繁化简,即化简的趋势都是使式子中尽可能只出现 $x$, 例如将 $\sin x$ 化为 $x$, 将 $\ln(1+x)$ 化为 $x$ 等。
  • 此外,把式子中的一部分化为和另一部分相同类型的形式更有可能简化运算,例如在本题中,分母是 $x^{2}$ $\ln(1-bx)$, 则把 $\ln(1-bx)$ 化为 $-bx$ 显然会让式子在形式上更统一,更有利于后面的计算;
  • 化简过程要严格按照公式进行,特别要注意负号和变量前面的参数,必要时要先加上括号维持原来的形式,之后一步步计算。

QQ 邮箱漂流瓶功能将于 2019 年 06 月 24 日起停止服务

QQ 邮箱团队于 2019 年 04 月 23 日在 QQ 邮箱的漂流瓶页面以弹窗形式发布公告表示“因业务调整,‘QQ邮箱漂流瓶’功能将于2019年6月24日起终止服务”。

公告截图如下:

QQ 邮箱漂流瓶功能将于 2019 年 06 月 24 日起停止服务
图 1. 截图来自 mail.qq.com

据悉,QQ 邮箱漂流瓶功能于 2010 年 09 月 28 日正式上线。由于有部分用户使用漂流瓶功能(微信和 QQ 邮箱此前均有漂流瓶功能)发布违禁内容,微信和 QQ 邮箱于 2018 年 11 月 30 日暂时下线了漂流瓶功能。此次 QQ 邮箱漂流瓶功能停止服务可能也是因为利用漂流瓶传播的内容不太容易管理。

百度旅游发布公告称将于 2019 年 06 月 30 日全面停止服务

百度旅游近日在其官网 (lvyou.baidu.com) 发布公告称,由于业务调整,百度旅游将在 2019 年 06 月 30 日全面停止服务,用户可以在 2019 年 12 月 31 日之前导出自己的数据到同一个账号下的百度网盘中。

图 1. 截取自 lvyou.baidu.com

公告全文如下:

世界很大,愿您遇见更美好的风景
致所有百度旅游的用户们:
感谢大家长久以来的支持,很遗憾的通知您,由于业务调整,百度旅游将在2019年6月30日全面停止服务,即日起,请不要再尝试上传各种内容,以防造成无法挽回的数据丢失。
停运具体事项安排如下:
百度旅游将在2019年6月30日全面停止服务,届时除了此公告页以外,您将无法访问其他页面,也将无法使用其他任何功能。
即日起至2019年12月31日期间,您可点击下方授权按钮,申请导出您的游记及画册数据,此数据将于24小时内迁移至PC版百度网盘-更多-文章目录下,您可使用相同百度账号在网盘访问您的资料。
若在过程中遇到任何问题或需要以邮件形式导出,可发送邮件至ilvyou-help@baidu.com,我们将在10个工作日内给您答复。
对因此次调整给您带来的不便,我们深表歉意。愿您在将来的日子里,遇见更好的风景。
请务必在2019年12月31日之前对需要保存的游记和相册进行导出以防丢失。

lvyou.baidu.com 公告

Elon Musk: Just deleted my Twitter account

June 16, 2019, Elon Musk sent a tweet:

Just deleted my Twitter account

Twitter @elonmusk

Screenshot is shown in figure A:

Figure A

In addition, he replaced his account profile picture with a black picture. Since he posted that tweet (say he will delete his Twitter account), he hasn’t updated anything, including replying to messages.

Maybe it’s true, maybe it’s just a joke. Who knows?

12:05, June 18, 2019, UTC update:

Musk updated his profile picture:

Figure B

2008 年研究生入学考试数学一填空题第 2 题解析

一、题目

曲线 $\sin (xy)$ $+$ $\ln(y-x)$ $=x$ 在点 $(0,1)$ 处的切线方程为__.

本题需要用到求导法则和切线方程公式的相关知识。

需要用到的求导公式有:

$(\sin x)’$ $=$ $\cos x$;

$(\ln x)’$ $=$ $\frac{1}{x}$;

$(ab)’$ $=$ $a’b$ $+$ $ab’$;

$f'(x)$ $=$ $f'[\phi(x)]$ $\cdot$ $\phi'(x)$.

求导过程中另外需要注意的两点如下:

  • 对 $x$ 求导,则包括 $x$ 和其他常量都要按照求导公式进行计算,而除了 $x$ 之外的其他变量则只加上求导符号 (例如: $’$) 即可,不进行求导计算;
  • 等式两边对同一变量求导后,等式仍然成立。因为求导前是等式,求导规则也一致,则求导后等式两边仍然恒等。

切线方程的计算公式如下:

$y$ $-$ $f(x_{0})$ $=$ $f'(x_{0})$ $(x-x_{0})$.

解答思路如下:

由于切线方程的计算公式中包含导数 $f'(x)$,因此,首先需要计算出导数。原式两边同时对 $x$ 求导可以产生导数 $y’$:

$[\sin(xy)$ $+$ $\ln(y-x)]’$ $=$ $(x)’$ $\Rightarrow$ $\cos(xy)$ $(x’y+xy’)$ $+$ $\frac{1}{y-x}$ $(y-x)’$ $=$ $1$ $\Rightarrow$ $\cos(xy)$ $(y$ $+$ $xy’$ $)$ $+$ $\frac{1}{y-x}$ $(y’$ $-$ $1$ $)$ $=$ $1$.

要求的是曲线在点 $(0,1)$ 处的切线方程,因此,我们把 $x$ $=$ $0$; $y$ $=$ $1$带入上面的到的式子中,得:

$1$ $\cdot$ $1$ $+$ $1$ $\cdot$ $(y’$ $-$ $1$ $)$ $=$ $1$ $\Rightarrow$ $1$ $+$ $y’$ $-$ $1$ $=$ $1$ $\Rightarrow$ $y’$ $=$ $1$.

即:

$y'(0)$ $=$ $1$.

将上述结果带入切线方程求导公式得:

$y$ $-$ $1$ $=$ $1$ $\cdot$ $($ $x$ $-$ $0$ $)$ $\Rightarrow$ $y$ $=$ $x$ $+$ $1$.

综上可知,本题得答案是:$y$ $=$ $x$ $+$ $1$.

EOF

2008 年研究生入学考试数学一选择题第 1 题解析

一、题目

设函数 $f(x)$ $=$ $\int_{0}^{x^{2}}$ $\ln(2+t)$ $dt$, 则 $f'(x)$ 的零点个数()

( A ) $0$.

( B ) $1$.

( C ) $2$.

( D ) $3$.

二、解析

本题可以使用积分和导数的相关定理解出。

涉及到的积分知识如下:

(1) 定积分基本性质

$\int_{a}^{b}$ $f(x)$ $dx$ $=$ $\int_{a}^{b}$ $f(t)dt$;

(2) 变上限积分函数求导

  • 若 $f(x)$ 在 $[a,b]$ 上连续,则 $F(x)$ $=$ $\int_{a}^{x}$ $f(t)$ $dt$ 在 $[a,b]$ 上可导,且 $F'(x)$ $=$ $f(x)$.
  • 若 $f(x)$ 在 $[a,b]$ 上连续,$\phi(x)$ 在 $[a,b]$ 上可导,设$F(x)$ $=$ $\int_{a}^{\phi(x)}$ $f(t)$ $dt$, 则:

$F'(x)$ $=$ $f[\phi(x)]$ $\cdot$ $\phi'(x)$.

涉及到的求导知识如下:

$(x^{a})’$ $=$ $ax^{a-1}$;

此外,我们需要知道的是,“函数零点”指的是 $f(x)$ $=$ $0$ 时,对应的自变量 $x$ 的数值,“函数零点” 不是一个点,而是一个数值。

解题思路如下:

根据变上限积分函数求导法则,有:

$f'(x)$ $=$ $\ln(2+x^{2})$ $\cdot$ $(x^{2})’$ $=$ $2$ $x$ $\ln(2+x^{2})$.

则要求函数 $f'(x)$ 的零点的个数,就是求 $2$ $x$ $\ln(2+x^{2})$ $=$ $0$ 的解的个数。

要使 $2$ $x$ $\ln(2+x^{2})$ $=$ $0$ 成立,则有以下三种情况(分情况讨论时要注意“不重不漏”):

(1) $2$ $x$ $=$ $0$ 且 $\ln(2+x^{2})$ $\neq$ $0$

此时解出 $x$ $=$ $0$.

(2) $2$ $x$ $\neq$ $0$ 且 $\ln(2+x^{2})$ $=$ $0$.

无解。

由于 $1$ $+$ $x^{2}$ $\geq$ $2$ 始终成立,而且当 $x$ $=$ $1$ 时,$\ln(x)$ $=$ $0$, 当 $x$ $>$ $1$ 时,$\ln(x)$ $>$ $0$.

所以,$\ln(2+x^{2})$ $>$ $0$ 始终成立,与 $x$ 轴没有交点。

(3) $2$ $x$ $=$ $0$ 且 $\ln(2+x^{2})$ $=$ $0$

$2$ $x$ $=$ $\ln(2+x^{2})$ $=$ $0$ $\Rightarrow$ 无解.

综上可知,当 $2$ $x$ $\ln(2+x^{2})$ $=$ $0$ 时,有:

$x$ $=$ $0$.

因此,只有一个零点,答案是:$B$.

EOF

2008 年研究生入学考试数学一解答题第 1 题解析(两种方法+手写作答)

一、题目

求极限 $\lim_{x \rightarrow 0}$ $\frac{[\sin x-\sin (\sin x)] \sin x}{x^{4}}$

二、解析

当题目中要求的是“极限”,而且出现了 $x$ $\rightarrow$ $0$ 时就要考虑是不是要用到或者可以用到等价无穷小。

还需要考虑的可能用到的知识是洛必达法则。当 $x$ $\rightarrow$ $0$ 时可能产生 $\frac{0}{0}$ 型的洛必达或者 $\frac{\infty}{\infty}$ 型的洛必达。而且,洛必达法则就是为求极限而生的,可以把对函数的求极限转换成对函数的导数求极限,从而可能化简原式。

方法一

本题考查的是等价无穷小,需要用到的两个等价无穷小如下(当 $x$ $\rightarrow$ $0$ 时):

$x$ $\sim$ $\sin x$;

$x$ $-$ $\sin x$ $\sim$ $\frac{1}{6}x^{3}$.

于是有:

原式 $=$ $\lim_{x \rightarrow 0}$ $\frac{[\sin x-\sin (\sin x)]\sin x}{\sin^{4}x}$ $=$ $\lim_{x \rightarrow 0}$ $\frac{\sin x-\sin(\sin x)}{\sin^{3} x}$

令 $\sin x$ $=$ $t$, 则有:

原式 $=$ $\lim_{x \rightarrow 0}$ $\frac{t-\sin(t)}{t^{3}}$

由于,当 $x$ $\rightarrow$ $0$ 时,$\sin x$ $\rightarrow$ $0$, 于是有 $t$ $\rightarrow$ $0$, 因此根据常见的等价无穷小,有:

$t$ $-$ $\sin t$ $\sim$ $\frac{1}{6}t^{3}$

因此有:

原式 $=$ $\lim_{x \rightarrow 0}$ $\frac{\frac{1}{6}t^{3}}{t^{3}}$ $=$ $\frac{1}{6}$

方法二

本题也可以结合使用等价无穷小与 $\frac{0}{0}$ 型洛必达等定理解出。

需要用到的等价无穷小有(当 $x$ $\rightarrow$ $0$ 时):

$x$ $\sim$ $\sin x$;

$1$ $-$ $\cos x$ $\sim$ $\frac{1}{2}x^{2}$

需要用到的洛必达法则公式是:

$\lim_{x \rightarrow x_{0}}$ $\frac{f(x)}{g(x)}$ $=$ $\lim_{x \rightarrow 0}$ $\frac{f'(x)}{g'(x)}$

需要用到的求导规则是:

$(\sin x)’$ $=$ $\cos x$;

$(u-v)’$ $=$ $u’$ $-$ $v’$;

$f'(x)$ $=$ $f'[g(x)]$ $g'(x)$.

解答思路如下:

由于,当 $x$ $\rightarrow$ $0$ 时,$\sin x$ $\sim x$, 于是有:

原式 $=$ $\lim_{x \rightarrow 0}$ $\frac{[\sin x-\sin(\sin x)]\sin x}{x^{3}\sin x}$ $=$ $\lim_{x \rightarrow0}$ $\frac{\sin x-\sin(\sin x)}{x^{3}}$ (1)

由于,当 $x$ $\rightarrow$ $0$ 时,有:

$\sin x$ $-$ $\sin(\sin x)$ $\rightarrow$ $0$, 且存在导数;

$x^{3}$ $\rightarrow$ $0$, 且存在导数.

因此,可以对 (1) 式使用洛必达法则:

原式 $=$ $\lim_{x\rightarrow0}$ $\frac{[\sin x-\sin(\sin x)]’}{(x^{3})’}$ $=$ $\lim_{x\rightarrow0}$ $\frac{\cos x-\cos(\sin x)\cos x}{3x^{2}}$

化简得:

原式 $=$ $\lim_{x\rightarrow0}$ $\frac{\cos[1-\cos(\sin x)]}{3x^{2}}$

由于,当 $x$ $\rightarrow$ $0$ 时,$\cos x$ $\rightarrow$ $1$, 因此,进一步化简得:

原式 $=$ $\lim_{x\rightarrow0}$ $\frac{1-\cos(\sin x)}{3x^{2}}$

使用等价无穷小进一步计算可得:

原式 $=$ $\lim_{x\rightarrow0}$ $\frac{\frac{1}{2}\sin^{2}x}{3x^{2}}$ $=$ $\frac{\frac{1}{2}}{3}$ $=$ $\frac{1}{6}$

方法一的手写作答:

方法二的手写作答:

EOF

2017 年研究生入学考试数学一选择题第 4 题解析(两种方法)

一、题目

甲乙两人赛跑,计时开始时,甲在乙前方 $10$(单位:m)处. 图中,实线表示甲的速度曲线 $v$ $=$ $v_{1}(t)$ (单位 : m/s),虚线表示乙的速度曲线 $v$ $=$ $v_{2}(t)$ (单位 : m/s),三块阴影部分面积的数值依次为 $10$, $20$, $3$. 计时开始后乙追上甲的时刻记为 $t_{0}$ (单位 : s),则()

( A ) $t_{0}$ $=$ $10$.

( B ) $15$ $<$ $t_{0}$ $<$ $20$.

( C ) $t_{0}$ $=$ $25$.

( D ) $t_{0}$ $>$ $25$.

二、解析

方法一

从物理学的角度,本题就是考查速度与路程的关系。

题目中给出的 $X$ $-$ $Y$ 坐标图像是“时间-速度”图像。那么,根据物理学知识我们知道,该曲线与坐标轴围成的图像的面积就是走过的路程。我们又知道,实线表示甲,虚线表示乙,而且刚开始时甲在乙前面 $10$ 米处。

由图像可知,当 $t$ $=$ $10$ 时,甲在乙前面 $20$ 米处,当 $t$ $=$ $25$ 时,乙在第 $10$ 秒到第 $25$ 秒之间的 $15$ 秒时间里比甲多跑了 $20$ 米,正好抵消了之前乙落后于甲的 $20$ 米路程。因此,当 $t$ $=$ $25$ 时,乙追上了甲,即 $t_{0}$ $=$ $25$。

综上可知,本题的正确选项是:$C$.

方法二

从数学的角度,本题主要考查的是定积分的基本运算和定积分的几何意义。

使用高等数学解答本题需要如下关于定积分的知识:

  1. 定积分的几何意义:
    曲边梯形的代数和.
  2. 定积分的基本性质:
    定积分的线性性:

$\int_{a}^{b}$ $[$ $k_{1}$ $f_{1}(x)$ $+$ $k_{2}$ $f_{2}(x)$ $]$ $dx$ $=$ $k_{1}$ $\int_{a}^{b}$ $f_{1}(x)$ $dx$ $+$ $k_{2}$ $\int_{a}^{b}$ $f_{2}(x)$ $dx$.

定积分积分区间的可加性:
$\int_{a}^{b}$ $f(x)$ $dx$ $=$ $\int_{a}^{c}$ $f(x)$ $dx$ $+$ $\int_{c}^{b}$ $f(x)$ $dx$.

根据上面的知识,我们可以做如下推理。

如果我们约定,使用 $v(t)$ 表示速度,使用 $s(t)$ 表示路程,那么在从 $0$ 到 $t$ 这个时间段内,可以写出如下定积分表达式:

$s(t)$ $=$ $\int_{0}^{t}$ $v(t)$ $dx$.

因此,当乙在 $t_{0}$ 时刻追上甲时,甲走过的路程为:

$s_{1}(t)$ $=$ $\int_{0}^{t_{0}}$ $v_{1}(t)$.

乙走过的路程为:

$s_{2}(t)$ $=$ $\int_{0}^{t_{0}}$ $v_{2}(t)$.

$s_{2}(t)$

和 $s_{1}(t)$ 的关系为:

$s_{2}(t)$ $-$ $10$ $=$ $s_{1}(t)$.

于是有:

$s_{2}(t)$ $-$ $s_{1}(t)$ $=$ $\int_{0}^{t_{0}}$ $v_{2}(t)$ $-$ $\int_{0}^{t_{0}}$ $v_{1}(t)$ $=$ $\int_{0}^{t_{0}}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $=$ $10$.

由于在从 $0$ 到 $10$ 秒的时间段内,$v_{2}$ 始终大于 $v_{1}$, 因此,乙超过甲的时间 $t_{0}$ 一定大于 $10$, 于是有:

$\int_{0}^{10}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $+$ $\int_{10}^{t_{0}}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $=$ $10$.

又由于,从题中给出的图像我们可以看出:

$\int_{0}^{10}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $=$ $10$.

因此有:

$\int_{10}^{t_{0}}$ $[$ $v_{2}(t)$ $-$ $v_{1}(t)$ $]$ $=$ $20$. (1)

根据题中图像可知,在第 $10$ 秒到第 $25$ 秒这段时间里,图像中对应的阴影部分的面积为 $20$, 所以当 $t_{0}$ $=$ $25$ 时, $(1) $ 式成立。

综上可知,本题的正确选项是:$C$.

EOF

Python 实现将文档文件中的同一种字符交替替换成不同的字符(0.1 版)

图 1. 符号约定,使用 https://carbon.now.sh 生成

如果图 1 显示不正常(由于对 SVG 格式的兼容性问题,在有些浏览器中会出现这种情况),你可以点击这里查看本文符号约定的 PNG 格式版

需求分析

最近我开始在博客上分享一些考研数学题的解题过程,因此,自然少不了要输入数学公式。我写文章的习惯是,首先,使用 Markdown 把文章写好,然后再复制到博客里发布,由于包括 WordPress 在内的许多博客平台都是支持 Markdown 的,因此这么做一直没有什么问题。

不过,在 Markdown 中输入数学公式的语法是类似这样的:

$\sqrt{2}$

可是,我在 WordPress 中使用的显示数学公式的插件要求的语法是类似这样的:

【latex】\sqrt{2}【/latex】

这样一来,每当我要在我的个人网站发布一篇带有数学公式的文章时,我都需要把一个公式两边的 “$” 分别替换成 “【latex】” 和 “【/latex】”.

手动替换很慢,所以我写了一段 Python 代码实现自动替换。

代码实现

注:以下代码在 Windows 10 中文家庭版 64 位系统下的 Python 3.7.0 环境中测试成功。

编写该程序需要注意的一点是必须实现对文件内容的逐字符读取和替换,如果是逐行读取替换的话,那么一次遍历就会把整行的所有 “$” 都替换成 “【latex】”, 不符合要求。

无注释版代码:

a=2  
with open(('1.md'), 'r',encoding='UTF-8') as f:
    for line in f:
        for ch in line:
            if ch=='$':
                if a % 2 == 0:
                    ch='【latex】'
                    a = a + 1
                elif a % 2 != 0:
                    ch = '【/latex】'
                    a = a + 1
            print (ch,end='')

有注释版代码:

a=2  
with open(('1.md'), 'r',encoding='UTF-8') as f:
# 读取 1.md 文件中的内容,可以读取中文。
    for line in f:
    # 遍历一行
        for ch in line:
        # 遍历一行中的每一个字符
            if ch=='$':
                if a % 2 == 0:
                # 如果 a 为偶数,把 $ 换成 【latex】
                    ch='【latex】'
                    a = a + 1
                    # 操作完成,改变 a 的值
                elif a % 2 != 0:
                # 如果 a 为奇数,把 $ 换成 【/latex】
                    ch = '【/latex】'
                    a = a + 1
                    # 操作完成,改变 a 的值
            print (ch,end='')
            # 输出本行的操作结果(end='' 保证了输出完一整行后再换行)

EOF

McAfeeMagic.com Under Denial of Service Attack (June 12, 2019)

安全公司 McAfee 创始人 John McAfee 于 2019 年 06 月 12 日在 Twitter 上发推表示,McAfeeMagic.com 使用的亚马逊 AWS 服务器遭遇了 “cloaked hoic DOS” 攻击,并且自己发自内心地感谢黑客的免费宣传:

图 1. 截图来自 Twitter @officialmcafee

John McAfee 说,亚马逊的 AWS 正在学习攻击流量的行为,攻击流量越大,网站恢复得越快:

图 2. 截图来自 Twitter @officialmcafee

2019 年 06 月 12 日下午 4 点 18 分,John McAfee 在 Twitter 上宣布 McAfeeMagic.com 已经恢复访问,截至本文发出时,McAfeeMagic.com 仍可以正常访问:

图 3. 截图来自 Twitter @officialmcafee

2017 年研究生入学考试数学一填空题第 1 题解析(两种方法)

一、题目

已知函数 $f(x)$ $=$ $\frac{1}{1+x^{2}}$, 则 $f^{(3)}(0)$ $=$

二、解析

方法一

本题可以借助函数奇偶性的相关性质解出。

由于:

$f(x)$ $=$ $\frac{1}{1+x^{2}}$

$f(x)$ $=$ $\frac{1}{1+x^{2}}$

$f(-x)$ $=$ $\frac{1}{1+(-x)^{2}}$ $=$ $\frac{1}{1+x^{2}}$

因此:

$f(x)$ $=$ $f(-x)$

于是,我们知道,函数 $f(x)$ 是一个偶函数。

接下来,根据“偶函数的导数是奇函数,奇函数的导数是偶函数”的规律,我们知道,函数 $f^{(3)}(x)$ 是一个奇函数。

又由于,如果一个奇函数 $g(x)$ 在原点处$($ $x$ $=$ $0$ $)$有定义,则 $g(x)$ $=$ $0$, 因此有:

$f^{(3)}(0)$ $=$ $0$

综上可知,本题的答案就是:$0$.

方法二

本题也可以借助泰勒级数计算。

本题要求解的是在 $x$ $=$ $0$ 时,$f(x)$ 的三次导函数的函数值。我们知道,麦克劳林级数就是函数在 $x$ $=$ $0$ 处的泰勒级数,是泰勒级数的一个特例。于是,这里我们可以使用麦克劳林级数对原式进行级数展开。

麦克劳林级数中有一个关于几何级数的公式,如下:

$\frac{1}{1-x}$ $=$ $\sum_{0}^{\infty}$ $x^{n}$, $|x|$ $<$ $1$

当我们把上述公式中的 $x$ 替换成 $-x^{2}$ 后,$f(x)$ 就可以使用上述几何级数的公式表达,如下:

$f(x)$ $=$ $\frac{1}{1+x^{2}}$ $=$ $\frac{1}{1-(-x^{2})}$ $=$ $\sum_{0}^{\infty}$ $(-x^{2})^{n}$ $=$ $\sum_{0}^{\infty}$ $(-1)^{n}$ $x^{2n}$

之后,对 $f(x)$ 求导:

$f'(x)$ $=$ $\sum_{0}^{\infty}$ $(-1)^{n}$ $\cdot$ $2n$ $\cdot$ $x^{2n-1}$

$f”(x)$ $=$ $\sum_{0}^{\infty}$ $(-1)^{n}$ $\cdot$ $2n$ $\cdot$ $(2n-1)$ $\cdot$ $x^{2n-2}$

$f”'(x)$ $=$ $\sum_{0}^{\infty}$ $(-1)^{n}$ $\cdot$ $2n$ $\cdot$ $(2n-1)$ $\cdot$ $(2n-2)$ $\cdot$ $x^{2n-3}$

于是,$f”'(0)=0$.

综上可知,本题的答案就是: $0$.

EOF

2017 年研究生入学考试数学一选择题第 2 题解析

一、题目

若函数 $f(x)$ 可导,且 $f(x)$ $f'(x)$ $>$ $0$, 则()

( A ) $f(1)$ $>$ $f(-1)$

( B ) $f(1)$ $<$ $f(-1)$

( C ) $|f(1)|$ $>$ $|f(-1)|$

( D ) $|f(1)|$ $<$ $|f(-1)|$

二、解析

观察题目我们可以发现,$f(x)$ $f'(x)$ 和下面这个这个公式很像:

$[f(x)$ $\cdot$ $g(x)]’$ $=$ $f'(x)$ $g(x)$ $+$ $f(x)$ $g'(x)$

如果我们令 $g(x)$ $=$ $f(x)$, 则有:

$f'(x)g(x)$ $+$ $f(x)g'(x)$ $=$ $f'(x)f(x)$ $+$ $f(x)f'(x)$ $=$ $f(x)f'(x)$ $+$ $f(x)f'(x)$ $=$ $2f(x)f'(x)$

进一步,我们可以令 $F(x)$ $=$ $f^{2}(x)$, 则有:

$F'(x)$ $=$ $2$ $f(x)f'(x)$

由题可知,$f(x)f'(x)$ $>$ $0$, 于是有 $F'(x)$ $>$ $0$, 即 $F(x)$ 是一个单调递增的函数,由此可得:

$F(1)$ $-$ $F(-1)$ $>$ $0$

即:

$f^{2}(1)$ $-$ $f^{2}(-1)$ $>$ $0$ $\Rightarrow$ $f^{2}(1)$ $>$ $f^{2}(-1)$ $\Rightarrow$ $|f(1)|$ $>$ $|f(-1)|$

综上可知,正确答案为:$C$.

EOF


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress