线性相关与线性无关边缘处的性质(C019)

问题

已知向量组 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{\boldsymbol{r}}$ $)$ 线性无关, 而向量组 $($ $\boldsymbol{\beta}$, $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{\boldsymbol{r}}$ $)$ 线性相关,则以下关于向量 $\boldsymbol{\beta}$ 和向量组 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{\boldsymbol{r}}$ $)$ 之间关系的说法中,正确的是哪个?

选项

[A].   $\boldsymbol{\beta}$ 或许可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{\boldsymbol{r}}$ $)$ 线性表示

[B].   $\boldsymbol{\beta}$ 不可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{\boldsymbol{r}}$ $)$ 线性表示

[C].   $\boldsymbol{\beta}$ 可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{\boldsymbol{r}}$ $)$ 线性表示,但表示法不唯一

[D].   $\boldsymbol{\beta}$ 可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{\boldsymbol{r}}$ $)$ 线性表示,且表示法唯一


答 案

$\boldsymbol{\beta}$ 可由 $($ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{\boldsymbol{r}}$ $)$ 线性表示,且表示法唯一

向量可由向量组线性表示的充要条件:所形成的矩阵的秩(C019)

问题

以下哪个选项可以说明向量 $\textcolor{orange}{\boldsymbol{\beta}}$ 和向量组 $\textcolor{yellow}{\boldsymbol{\alpha}_{1}}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{2}}$, $\textcolor{yellow}{\cdots}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{m}}$ 线

选项

[A].   $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $\leqslant$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\beta}\right)$

[B].   $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $\neq$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\beta}\right)$

[C].   $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $=$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\beta}\right)$

[D].   $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $\geqslant$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\beta}\right)$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\mathrm{\textcolor{red}{r}}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $=$ $\mathrm{\textcolor{red}{r}}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\textcolor{red}{\beta}}\right)$

向量可由向量组线性表示的充要条件:非齐次线性方程组的解(C019)

问题

如果非齐次线性方程组 $\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_m\end{array}\right)$ $=$ $\boldsymbol{\beta}$ ,是否可以说明向量 $\textcolor{orange}{\boldsymbol{\beta}}$ 向量组 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 线

选项

[A].   

[B].   不能

[C].   不确定


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

向量 $\textcolor{orange}{\textcolor{orange}{\boldsymbol{\beta}}}$ 向量组 $\textcolor{yellow}{\boldsymbol{\alpha}_{1}}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{2}}$, $\textcolor{yellow}{\cdots}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{m}}$ 线
$\textcolor{red}{\Leftrightarrow}$
非齐次线性方程组 $\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_m\end{array}\right)$ $=$ $\boldsymbol{\beta}$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress