一、前言
我们知道,一般情况下,积分会导致函数的奇偶性发生改变。例如,在下面的式子中,一般情况下,如果函数 $f(x)$ 是奇函数,则 $F(x)$ 就是偶函数;如果函数 $f(x)$ 是偶函数,则 $F(x)$ 就是奇函数:
$$
F(x) = \int_{0}^{x} f(t) \mathrm{~d} t
$$
但是,如果我们要分析的是下面这个式子,则函数 $f(x)$ 的奇偶性会对函数 $F(x)$ 的奇偶性产生什么样的影响呢?
$$
F(x) = \int_{0}^{x} g(x) \cdot f(t) \mathrm{~d} t
$$
在本文中,「荒原之梦考研数学」将通过详细的计算,给同学们讲明白这个问题。
继续阅读“关于积分对函数奇偶性影响的一个扩展公式”